K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

đường cao hình thoi là gì hả bạn ???

10 tháng 7 2019

Giả sử hình thoi ABCD, đường chéo AC vuông góc với BD tại O, AC = 20 cm; BD = 15 cm.

Gọi BH là đường cao hình thoi kẻ từ đỉnh B.

Ta có: DO =  1 2 BD =  1 2 .15 = 7,5 (cm);

AO = 1 2 AC = 1 2 .20 = 10 (cm)

Áp dụng định lý Py-ta-go trong tam giác vuông AOD vuông tại O ta có:

AD = A O 2 + O D 2 = 10 2 + 7 , 5 2 = 12,5 (cm)

SABCD = 1 2 BD. AC = 1 2 15.20 = 24 (cm2)

SABCD = BH. AD => BH = S A B C D A D = 150 12 , 5 = 12 (cm)

Đáp án cần chọn là: A

1 tháng 8 2019

Giả sử hình thoi ABCD, đường chéo AC vuông góc với BD tại O, AC = 8 cm; BD = 6 cm.

Gọi BH là đường cao hình thoi kẻ từ đỉnh B.

Ta có: DO =  1 2 BD =  1 2 .6 = 3 (cm);

AO = 1 2 AC = 1 2 .8 = 4 (cm)

 

Áp dụng định lý Py-ta-go trong tam giác vuông AOD vuông tại O ta có:

AD = A O 2 + O D 2 = 4 2 + 3 2 = 5 (cm)

SABCD = 1 2 BD. AC = 1 2 6.8 = 24 (cm2)

SABCD = BH. AD => BH = S A B C D A D = 24 5 = 4, 8 (cm)

Đáp án cần chọn là: B

17 tháng 8 2016

Gọi O là giao điểm 2 đường chéo AC và BD.

Vì AC=8 cm, BD=6cm

\(\Rightarrow\)OA=4cm, OB=3cm\(\Rightarrow\)AB=5cm

Chu vi đáy: 2p=5.4=20 (cm)

\(S_{xq}=20\cdot7=170\left(cm^2\right)\)

\(S_{đáy}=\frac{AC\cdot BD}{2}=\frac{8\cdot6}{2}=24\left(cm^2\right)\)

\(\Rightarrow V=S_{đáy}\cdot h=24\cdot7=168\left(cm^3\right)\)

26 tháng 12 2021

a: Độ dài đường chéo là \(5\sqrt{2}\left(cm\right)\)

3 tháng 5 2017

A B O C D H

Gọi hình thoi đó là ABCD

Hai đường chéo BD và AC cắt nhau và vuông góc tại O

Kẻ đường cao AH (H\(\in DC\))

a. SABCD=\(\dfrac{1}{2}.AC.BD=\dfrac{1}{2}.12.16=96\left(cm^2\right)\)

Vậy diện tích hình thoi đó là 96 cm2

b. Ta có: AO=OC=\(\dfrac{AC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

OD=OB=\(\dfrac{BD}{2}=\dfrac{16}{2}=8\left(cm\right)\)

Xét \(\Delta DAO\)\(\widehat{DOA}=90^o\)

=> OD2+AO2=AD2 (định lý Py-ta-go)

hay: 82+62=AD2

=> AD2=100

=> AD=10 (cm)

Vậy độ dài một cạnh của hình thoi đó là 10 cm

c. Ta có: SABCD=AH.DC

=> AH=\(\dfrac{S_{ABCD}}{DC}=\dfrac{96}{10}=9,6\left(cm\right)\)

Vậy độ dài đường cao của hình thoi đó là 9,6 cm