K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2015

olm oi ! giúp em bài toán này với đi ạ !

6 tháng 10 2015

Hình thang ABCS, đáy nhỏ AB, đáy lớn CD, giao điểm của 2 đường chéo hình thang là O, kẻ đoạn thẳng qua O và song song với đường cao của hinh thang cắt AB tại M, CD tại N, đường cao ABCD là AH. nên MN=AH

HÌnh thang ABCD cân nên tam giác AOB và DOC cân, nên M, N là trugn điểm của AB và CD

OM là trung tuyến tam giác vuông AOB nên OM = 1/2 AB, tương tự có ON=1/2 CD nên MN= (AB+CD)/2

đường trung bình hình thang cũng bằng (AB+CD)/2. do đó đường trung bình hình thang = MN=AH=10cm

22 tháng 9 2015

Giả sử gọi hình thang cân là ABCD có đáy lớn là CD đáy nhỏ là AB 
ta có đường trung bình của hình thang bằng MN= 1/2(AB+CD) 
(M là trung điẻm của AD, N là trung điểm của BC) 
gọi giao của AC và BD là K từ K kẻ đường thẳng vuông với AB và CD dễ thấy đường thẳng đó đi qua trung điểm I của AB và J của CD 
mà K lại vuông nên KI = 1/2 AB 
KJ= 1/2 CD 
ta có :
IJ= 1/2(AB+CD)=MN= AH = 10 cm

25 tháng 9 2017

Hinh thang ABCS,day nho AB day lon CD giao diem cua 2 hinh thang cheo la O ke daon thang qua O va song song voi duong cao cua hinh thang cat AB tai M, CD tai N duong cao cua ADCD la AH.Nen MN=AH

Hinh thang ABCD can nen tam giac AOB va DOC can nen MN la trung diem cua AB va CD. OM la trung tuyen tam giac vuong AOB nen OM =1/2 AOB tuong tu co ON=1/2 CD nen MN = (AB+CD):2 Duong trung binh hinh thang cung bang (AB+CD):2 Do da duong trung binh hinh thang bang MN=AH=10cm

A B C D O M N

22 tháng 8 2017

A B C D E F H M N

Ta có: EF là đg trung bình của hthang ABCD => EF=1/2.(AB+CD)    (1)

Xét hthang ABCD có :\(S_{ABCD}=\frac{1}{2}.\left(AB+CD\right).AH\)  (2)

Từ (1),(2)=> \(S_{ABCD}=AH.EF\)   (3)

mà hthang ABCD đc chia làm 2 tg ko có điểm trong chung là tg ABC và tg ADC nên \(S_{ABCD}=S_{ABC}+S_{ADC}\)

Mặt khác: \(S_{ABC}=\frac{1}{2}.BN.AC\)   ;   \(S_{ADC}=\frac{1}{2}.DN.AC\)

=>\(S_{ABCD}=\frac{1}{2}.AC.\left(BN+DN\right)=\frac{1}{2}.AC.BD\)   (4)

Từ (3),(4)=> \(AH.EF=\frac{1}{2}.AC.BD=\frac{AC^2}{2}\)   (vì tg ABCD là hthang)

=>\(EF=\frac{AC^2}{2AH}=\frac{AC^2}{20}\)(vì AH=10cm)

Ta c/m đc : AH=HC => AH^2 =HC^2 => AH^2  +   HC^2 = .AH^2 =100

Mà AH^2 +HC^2=AC^2=> AC^2=100

=> EF= 100/20=5 (cm)