K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2019

1 tháng 5 2023

câu B vì 

Diện tích phải sơn một mặt của hình hộp tăng thêm216:6=36(cm2)

Gọi độ dài cạnh của hình lập phương là x(cm) x>0>0

Phương trình(x+2)2−x2=36

⇔4x=32

 ⇔x=8  (TM )

 Độ dài cạnh của chiếc hộp bằng 8cm

  
13 tháng 12 2018

TAM GIÁC ĐỒNG DẠNG 1, a) Cho AB=6 dm, AC=15 cm , tìm tỉ số hai đoạn thẳng AB và AC . b) Cho AB=6 cm, AC=18 cm , tìm tỉ số hai đoạn thẳng AB và AC . 2, ΔMNP _____ ΔABC thì : a) \(\frac{MN}{AB}=\)........ b) \(\frac{MP}{AC}=........\) 3, Tìm tam giác đồng dạng có độ dài ba cạnh dưới đây: A. 4 cm; 5 cm; 6 cm và 4 cm; 5 cm; 7 cm. B. 2 cm; 3 cm; 4 cm và...
Đọc tiếp

TAM GIÁC ĐỒNG DẠNG

1, a) Cho AB=6 dm, AC=15 cm , tìm tỉ số hai đoạn thẳng AB và AC .

b) Cho AB=6 cm, AC=18 cm , tìm tỉ số hai đoạn thẳng AB và AC .

2, ΔMNP _____ ΔABC thì : a) \(\frac{MN}{AB}=\)........ b) \(\frac{MP}{AC}=........\)

3, Tìm tam giác đồng dạng có độ dài ba cạnh dưới đây:

A. 4 cm; 5 cm; 6 cm và 4 cm; 5 cm; 7 cm. B. 2 cm; 3 cm; 4 cm và 2 cm ; 5cm ; 4 cm.

C. 6 cm; 5 cm; 7 cm và 6 cm; 5 cm; 8 cm. D. 3 cm; 4 cm; 5cm và 6 cm;8 cm; 10 cm.

4, a) Cho ΔABC có AB=3 cm, AC= 6 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại E. Biết BD= 2cm. Tính độ dài đoạn thẳng EC ❓

b) Cho \(\Delta ABC\) có AB = 6 cm, AC= 8 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại D. Biết CD= 4 cm. Tính độ dài đoạn thẳng DB ❓

5. a) Cho \(\Delta DEF\sim\Delta ABC\) theo tỉ số đồng dạng k = 2. Tìm tỉ số \(\frac{S_{DÈF}}{S_{ABC}}\)

b) Cho \(\Delta DEF\)\(\sim\Delta ABC\) theo tỉ số đồng dạng k=\(\frac{1}{2}\). Tìm tỉ số \(\frac{S_{DEF}}{S_{ABC}}\)

6. Cho \(\Delta ABC.\)Lấy 2 điểm D và E lần lượt nằm trên cạnh AB và AC sao cho \(\frac{AD}{AB}=\frac{AE}{AC}.\)Kết luận nào sai

A. \(\Delta ADE\sim\Delta ABC\) B. DE//BC C. \(\frac{AE}{AD}=\frac{AC}{AB}\) D. \(\Delta ADE=\Delta ABC\)

7, Nếu hai tam giác ABC và DEF có góc A= góc D, góc C= góc E thì:

A.\(\Delta ABC\sim\Delta DEF\) B. \(\Delta ABC\sim\Delta EDF\)

C. \(\Delta ABC\sim\Delta DFE\) D.\(\Delta ABC\sim\Delta FED\)

giải giúp mình với! Mình cần gấp

1

TAM GIÁC ĐỒNG DẠNG

1, a) Tỉ số hai đoạn thẳng AB và AC : \(\frac{AB}{AC}=\frac{6}{15}\)

b) Tỉ số hai đoạn thẳng AB và AC . : \(\frac{AB}{AC}=\frac{6}{18}=\frac{1}{3}\)

2, ΔMNP ~ ΔABC thì : \(\frac{MN}{AB}=\frac{NP}{BC}=\frac{MP}{AC}\)

3, Tìm tam giác đồng dạng có độ dài ba cạnh dưới đây:

A. 4 cm; 5 cm; 6 cm và 4 cm; 5 cm; 7 cm. B. 2 cm; 3 cm; 4 cm và 2 cm ; 5cm ; 4 cm.

C. 6 cm; 5 cm; 7 cm và 6 cm; 5 cm; 8 cm. D. 3 cm; 4 cm; 5cm và 6 cm;8 cm; 10 cm.

4, a) Cho ΔABC có AB=3 cm, AC= 6 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại E. Biết BD= 2cm. Tính độ dài đoạn thẳng EC ❓

Bạn ơi D ở đâu vậy ?

b) Cho ΔABCΔABC có AB = 6 cm, AC= 8 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại D. Biết CD= 4 cm. Tính độ dài đoạn thẳng DB ❓

Xét \(\Delta ABC\) có AD là phân giác

\(\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\Rightarrow BD=\frac{AB.CD}{AC}=3cm\)

5. a) Cho ΔDEF∼ΔABC theo tỉ số đồng dạng k = 2. Tìm tỉ số SDÈFvà SABC

\(\frac{S_{\Delta DEF}}{S_{\Delta ABC}}=k^2=2^2=4\)

b) Cho ΔDEF∼ΔABC theo tỉ số đồng dạng k=\(\frac{1}{2}\). Tìm tỉ số SDEF và SABC

\(\frac{S_{\Delta DEF}}{S_{\Delta ABC}}=k^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)

6. Cho ΔABC..Lấy 2 điểm D và E lần lượt nằm trên cạnh AB và AC sao cho AD/AB=AE/AC Kết luận nào sai

A. ΔADE∼ΔABC B. DE//BC

C. AE/AD=AC/AB D. ΔADE=ΔABC

7, Nếu hai tam giác ABC và DEF có góc A= góc D, góc C= góc E thì:

A.ΔABC∼ΔDEF B. ΔABC∼ΔEDF

C. ΔABC∼ΔDFE D.ΔABC∼ΔFED

14 tháng 5 2019

cảm ơn bạn nhiều nha

31 tháng 5 2017

(B) 2 cm và 6 cm

3 tháng 12 2020

- Gọi x,y là 2 kích thước của hình chữ nhật.

Theo bài ra ta có:

x2 = 16

xy = 28

=> Ta được: x = 4 (cm); y = 7 (cm)

6 tháng 4 2018

Thể tính hình hộp chữ nhật là:

      \(V=3\sqrt{2}.4\sqrt{2}.5=120\left(cm^3\right)\)

10 tháng 7 2017

A B C D E F

Kẻ \(AE,BF⊥DC\)

Theo đề bài ta có \(\widehat{ADE}=\widehat{BCF}=45^0\Rightarrow\Delta ADE\)và \(\Delta BCF\) vuông cân 

\(ÀD=BC=\frac{4\sqrt{2}}{5}\)

Xét \(\Delta ADE\) có \(AE^2+DE^2=AD^2\Rightarrow2AE^2=AD^2\Rightarrow AE=\sqrt{\frac{AD^2}{2}}=\frac{4}{5}\)

Xét \(\Delta BCF\)có \(BF^2+CF^2=BC^2\Rightarrow2BF^2=BC^2\Rightarrow BF=\sqrt{\frac{BC^2}{2}}=\frac{4}{5}\)

Ta có \(AB=EF\Rightarrow AB=CD-DE-CF=3.2-\frac{4}{5}-\frac{4}{5}=\frac{8}{5}\)