Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 2x+3>=1
=>2x>=-2
hay x>=-1
b: -3x+4<=5
=>-3x<=1
hay x>=-1/3
c: 3x+5<4-2x
=>5x<-1
hay x<-1/5
d: 1/2x+7>-5/2
=>1/2x>-19/2
hay x>-19
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
Từ (1) và (2) => \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Bài 5:
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
Vậy a = b = c
Bài 1:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=10\end{matrix}\right.\)
Vậy x = 6, y = 10
Bài 2:
Ta có: \(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)
\(\Rightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)
\(\Rightarrow ab-6a+5b-30=ab+6a-5b-30\)
\(\Rightarrow-6a+5b=6a-5b\)
\(\Rightarrow10b=12a\)
\(\Rightarrow6a=5b\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{5}{6}\)
\(\Rightarrowđpcm\)
B1 :
+ Theo bài ra :
\(\dfrac{x}{3}=\dfrac{y}{5}\left(1\right)\)và \(x+y=16\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\)
+ Do đó :
\(\dfrac{x}{3}=2\Rightarrow x=2.3=6\)
\(\dfrac{y}{5}=2\Rightarrow y=2.5=10\)
Vậy x = 6 ; y = 10
b) Vì AH vuông BC nên góc AHC = 90 độ
Ta có góc HAC + C = 90 độ
=> HAC + 30 = 90
=> HAC = 90 - 30
= 60
Do AD là tia pg của BAC nên
BAD = DAC = HAC: 2 = 30 độ
Ta có HAD + DAC = HAC
=> HAD + 30 = 60
=> HAD = 30 độ. Lại có HAD+ADH=90(t/c g vuông)=>30+ADH=90=>ADH=60độ
Các dấu góc bạn đánh vào nhé! Chỗ nào ko hiểu hỏi mình!
Tự vẽ hình
a) Adụng tc tổng 3 góc của 1 tg ta có:
A + B + C = 180 độ
=> 90+60+C = 180
=> C = 30
1)Ta có:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\)(đpcm)
Ta có:A=\(\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}\)
\(\Rightarrow A=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{a+c}=\frac{a+c+b}{b+c+a+b+a+c}\)\(\Rightarrow A=\frac{a+b+c}{2a+2b+2c}=\frac{\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{1}{2}\)
Vậy A=\(\frac{1}{2}\)
Vì x tỉ lệ thuận với y theo hệ số tỉ lệ a nên x = y.a (1)
y tỉ lệ thuận với z theo hệ số tỉ lệ b nên y = z.b (2)
z tỉ lệ thuận với t theo hệ số tỉ lệ c nên z = t.c (3)
Từ (1); (2) và (3) => x = t.c.b.a
=> \(t=\frac{x}{c.b.a}=x.\frac{1}{c.b.a}\)
Vậy t tỉ lệ thuận với x và hệ số tỉ lệ là \(\frac{1}{c.b.a}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{3c}{3d}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2b+3d}\left(đpcm\right)\)
Gọi độ dài 3 cạnh của tam giác là x,y,z
Theo đề bài ta có:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}\) và \(x+y+z=22\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{2+4+5}=\frac{22}{11}=2\)
=>\(\begin{cases}x=4\\y=8\\z=10\end{cases}\)
Kết luận...............