K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

Cho hình thoi ABCD có cạnh AB = 6cm, ∠A = 600
bai-35

+ ABCD là hình thoi ⇒ ΔBAD cân tại A. Mà ∠A = 600 nên ΔABD là tam giác đều ⇒ BD = AB = 6cm

+ AC ⊥ BD và BI = ID = 3cm

Trong tam giác vuông AIB áp dụng định lý pitago

AI2 = AB2 – IB2 = 36 – 9 = 27 ⇒ AI = √27 (cm)

Suy ra: AC = 2AI = 2√27 (cm)

Vậy SABCD = 1/2AC.BD = 1/2.2√27 .6 = 12√27 (cm2)

22 tháng 1 2018

ΔABD là tam giác đều nên BD = AB = 6cm

I là giao điểm của AC và BD => AI ⊥ DB

=> AI là đường cao của tam giác đều ABD nên

Giải bài 35 trang 129 Toán 8 Tập 1 | Giải bài tập Toán 8

20 tháng 4 2018

Giải bài 35 trang 129 Toán 8 Tập 1 | Giải bài tập Toán 8

Cho hình thoi ABCD có cạnh AB = 6cm, góc ∠A = 60o.

Cách 1:

ΔABD là tam giác đều nên BD = AB = 6cm

I là giao điểm của AC và BD => AI ⊥ DB

⇒ AI là đường cao của tam giác đều ABD nên

Giải bài 35 trang 129 Toán 8 Tập 1 | Giải bài tập Toán 8

Cách 2:

Giải bài 35 trang 129 Toán 8 Tập 1 | Giải bài tập Toán 8

Khi đó ΔABD là tam giác đều. Từ B vẽ BH ⊥ AD thì HA = HD.

Nên tam giác vuông AHB là nửa tam giác đều.

BH là đường cao tam giác đều cạnh 6cm, nên

Giải bài 35 trang 129 Toán 8 Tập 1 | Giải bài tập Toán 8

13 tháng 1 2022

undefined

Ta có : AB=BC (ABCD là hình thoi)

=> Tam giác ABC cân tại B

Mà góc B =60o

=> Tam giác ABC đều.

=> AB=BC=CA=6cm

     BD=2BE=2.\(\dfrac{\sqrt{3}}{2}\).6=6\(\sqrt{3}\)cm (bạn tự c/m nhé, nó không khó đâu).

SABCD=\(\dfrac{1}{2}\).6.6.\(\sqrt{3}\)=18\(\sqrt{3}\)

 

15 tháng 12 2018

Vào link sau tham khảo

Bài 35 Sgk tập 1 - trang 129 - Toán lớp 8 | Học trực tuyến

hk tốt!!!!!