\((AD//BC\)) hai đường chéo cắt nhau tại O. Biết...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2019

c) ΔFNA~ΔFDC => \(\frac{S_{FNA}}{S_{FDC}}=\frac{AN^2}{DC^2}\) (1)

ΔAMC~ΔFDC => \(\frac{S_{AMC}}{S_{FDC}}=\frac{MC^2}{DC^2}\) (2)

Ta cũng có AN = DM (3)

Từ (1), (2) và (3) ta có : \(S^2_{FDC}=\frac{S_{FNA}.S_{AMC}.CD^4}{MD^2.MC^2}=S_{FNA}.S_{AMC}.\frac{\left(MD+MC\right)^4}{MD^2.MC^2}\)

\(\ge16.S_{FNA}.S_{AMC}\) (Áp dụng BĐT Cauchy)

~ Học tốt nha bạn ~

11 tháng 6 2019

đề bài có sai ko bn?

7 tháng 9 2020

A B C D K E F H

a, ABCD là hình thang (gt) => AB // CD (đn)

=> OA/OC = OB/OD (talet)                                          (1)

có AF // BC (gt) => FO/OB = AO/OC (talet) ; có BE // AD (gt) => OE/OA = OB/OD (talet) và (1)

=> FO/OB = OE/OA ; xét tg AOB 

=> FE // AB (talet đảo)

b, có DA // BE (Gt) ; ^DAO slt ^OEB ; ^ADO slt ^OBE 

=> ^DAO = ^OEB và ^ADO = ^OBE (đl)

xét tg ADO và tg EBO 

=> tg ADO đồng dạng với tg EBO (g-g)

=> AO/OE = DO/OB                  (2)

+ AB // FE (câu a) => AO/OE = AB/EF (talet) ; có AB // DC (Câu a) => DO/OB = CD/AB (talet) và (2)

=> AB/EF = CD/AB 

=> AB^2  = EF.CD 

c, kẻ AH _|_ BD ; CK _|_ BD

có S1 = OB.AH/2 ; S2 = OD.CK/2  => S1.S2 = OB.AH.OD.CK/4

CÓ S3 = AH.DO/2 ; S4 = CK.OB/2 => C3.C4 = OB.AH.OD.CK/4

=> S1.S2 = S3.S4

9 tháng 5 2017

a) Xét tam giác ADC và tam giác BEC , có

góc C chung

góc ADC=góc CBE (=90*)

=> tam giác ADC đông dạng với tam giác BEC (g.g)

b) Xét tam giác ABK và tam giác AEK, có

góc BDK = góc AEK (=90*_

góc BKD=AKE ( đối đỉnh)

=> tam giác BDK ~ tam giác AEK (g.g)

=> BK/KD=KE/AK ( tỉ lệ đồng dạng )

=> BK.KE=AK.KD ( đpcm)

 

9 tháng 5 2017

câu c bn ơi

a) Xét ΔABC có

BI là đường cao ứng với cạnh AC(gt)

CK là đường cao ứng với cạnh AB(gt)

BI\(\cap\)CK={H}

Do đó: H là trực tâm của ΔABC

hay AH⊥BC(đpcm)

b) Xét ΔADC vuông tại D và ΔAID vuông tại I có

\(\widehat{DAC}\) chung

Do đó: ΔADC\(\sim\)ΔAID(g-g)

\(\frac{AD}{AI}=\frac{AC}{AD}=k\)(tỉ số đồng dạng)

hay \(AD^2=AC\cdot AI\)

a: Xét ΔABC vuông tại A và ΔHBA vuôngtại H có

góc B chung

Do đó; ΔABC đồng dạng với ΔHBA

b: Xét ΔAHB vuông tại H có HI là đường cao

nên \(AI\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HK là đường cao

nên \(AK\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)

3 tháng 10 2018

A B H D C 1 2

a,kẻ \(AH\bot DC(H\in BC)\)

cm được ABHD là hình chữ nhật suy ra AB=HD=2cm

Mà DH+HC=DC

\(\Rightarrow HC=DC-DH=4-2=2\Rightarrow HC=DH=2cm\) 

\(\Rightarrow \Delta DBC\) cân tại B

\(\Rightarrow \angle D_1=\angle C=45^o\Rightarrow \angle DBC=90^o\)

\(\Rightarrow\Delta DBC \) vuông cân tại B

b,Ta có \(\angle D_1+\angle D_2=90^o\Rightarrow \angle D_2=90^o-\angle D_1=90^o-45^o=45^o\)

\(\Rightarrow \angle D_1=\angle D_2 \Rightarrow\) DB là phân giác góc D

c,Ta tính được BH=DH=CH=2cm 

\(\Rightarrow S_{ABCD}=\dfrac{1}{2}BH(AB+DC)=\dfrac{1}{2}.2.(2+4)=6cm^2\)