K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2017

a) Từ chu vi tính được cạnh tam giác đều là 30 : 3 = 10 ( cm)

Kẻ đường cao AH xuống BC, H thuộc BC

Dùng Pytago tìm được AH = \(5\sqrt{3}\)

Diện tích tam giác ABC là AH . BC = \(50\sqrt{3}\)

Vậy ...

11 tháng 8 2017

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

a) + ΔABE vuông tại A.

+ ΔBCD vuông tại C.

+ Ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy ΔBED vuông tại B.

b) + Áp dụng định lý Pytago trong ΔABE vuông tại A ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

+ Áp dụng định lý Pytago trong ΔEBD vuông tại B ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

19 tháng 3 2019

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

a) + ΔABE vuông tại A.

+ ΔBCD vuông tại C.

+ Ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy ΔBED vuông tại B.

b) + Áp dụng định lý Pytago trong ΔABE vuông tại A ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

+ Áp dụng định lý Pytago trong ΔEBD vuông tại B ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

23 tháng 2 2022

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a) Trong tam giác ABC, ta có: AD là đường phân giác của:

\(\dfrac{DB}{DC}\)=\(\dfrac{AB}{AC}\)

Mà AB = 15cm và AC = 20cm ( gt )

Nên \(\dfrac{DC}{DB}\)=\(\dfrac{15}{20}\)

\(\dfrac{DB}{DB+DC}\)=\(\dfrac{15}{15+20}\)( Tính chất tỉ lệ thức đã học ở lớp 7 )

\(\dfrac{DB}{BC}\)=\(\dfrac{15}{35}\)⇒DB=\(\dfrac{15}{35}\).BC=\(\dfrac{15}{35}\).25=\(\dfrac{75}{5}\)(cm)

b) Kẻ AH⊥BC

Ta có:\(S_{ABD}\)=\(\dfrac{1}{2}\)AH.BD

\(S_{ACD}\)=\(\dfrac{1}{2}\)AH.CD

\(\dfrac{S_{ABD}}{S_{ACD}}\)=\(\dfrac{\dfrac{1}{2}AH.BD}{\dfrac{1}{2}AH.CD}\)=\(\dfrac{BD}{DC}\)

Mà \(\dfrac{DB}{DC}\)=\(\dfrac{15}{12}\)=\(\dfrac{3}{4}\)

\(\dfrac{S_{ABD}}{S_{ACD}}\)=\(\dfrac{3}{4}\)(đpcm)

 

1 tháng 3 2018

Hình tự vẽ lấy nhé

a) Trong tam giác ABC, ta có: AD là đường phân giác của:

\(\Rightarrow\frac{DB}{DC}=\frac{AB}{AC}\)

Mà AB = 15cm và AC = 20cm ( gt )

Nên \(\frac{DB}{DC}=\frac{15}{20}\)

\(\Rightarrow\frac{DB}{DB+DC}=\frac{15}{15+20}\)( Tính chất tỉ lệ thức đã học ở lớp 7 )

\(\Rightarrow\frac{DB}{BC}=\frac{15}{35}\Rightarrow DB=\frac{15}{35}.BC=\frac{15}{35}.25=\frac{75}{7}\left(cm\right)\)

b) Kẻ \(AH\perp BC\)

Ta có: \(S_{ABD}=\frac{1}{2}AH.BD\)

\(S_{ACD}=\frac{1}{2}AH.CD\)

\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{\frac{1}{2}AH.BD}{\frac{1}{2}AH.CD}=\frac{BD}{DC}\)

Mà \(\frac{DB}{DC}=\frac{15}{12}=\frac{3}{4}\)

\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{3}{4}\left(đpcm\right)\)

29 tháng 8 2021

a) Xét tam giác ABC có:

BD là tia phân giác \(\widehat{BAC}\)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BD}{DC}=\dfrac{15}{20}=\dfrac{3}{4}\)(tính chất)

 \(\Rightarrow\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{BC}{7}=\dfrac{25}{7}\)(tính chất dãy tỉ số bằng nhau)

\(\Rightarrow\left\{{}\begin{matrix}DB=\dfrac{25.3}{7}=\dfrac{75}{7}\left(cm\right)\\DC=\dfrac{25.4}{7}=\dfrac{100}{7}\left(cm\right)\end{matrix}\right.\)

b) Kẻ đường cao AH của tam giác ABC

\(\Rightarrow\dfrac{S_{ACD}}{S_{ABC}}=\dfrac{\dfrac{1}{2}.AH.DC}{\dfrac{1}{2}.AH.BC}=\dfrac{DC}{BC}=\dfrac{100}{7}:25=\dfrac{4}{7}\)

a: Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{15}=\dfrac{CD}{20}\)

mà BD+CD=25cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{15}=\dfrac{CD}{20}=\dfrac{25}{35}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{75}{7}cm;CD=\dfrac{100}{7}cm\)

a: BD/CD=12/16=3/4

=>S ABD/ SACD=3/4

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

AD là phân giác

=>BD/3=CD/4=20/7

=>BD=60/7cm; CD=80/7cm

\(AH=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

15 tháng 5 2023

Có hình vẽ ko bạn cho mình xin với

a: BC=căn 12^2+16^2=20cm

Xét ΔABC có AD là phân giác

nên BD/DC=AB/AC=3/4

=>BD/3=DC/4=(BD+DC)/(3+4)=20/7

=>BD=60/7cm; DC=80/7cm

Xét ΔCAB có ED//AB

nên ED/AB=CD/CB=4/7

=>ED/12=4/7

=>ED=48/7cm

b: S ABC=1/2*12*16=96cm2

BD/BC=3/7

=>S ABD/S ABC=3/7

=>S ABD=288/7cm2