Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{\left(5^3\right)^3\cdot4^4}{5^{12}}=\dfrac{1}{5^3}\cdot4^4=\dfrac{4^4}{5^3}\)
b: \(=\dfrac{3^6}{\left[3^3\cdot2\right]^2}=\dfrac{1}{2^2}=\dfrac{1}{4}\)
c: \(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot5}=\dfrac{4}{5}\)
Bài làm :
\(\frac{4^6\times9^5+120\times6^9}{8^4\times3^{12}-6^{11}}\)
\(=\frac{\left(2^2\right)^6\times\left(3^2\right)^5+2^3\times5\times3\times\left(2\times3\right)^9}{\left(2^3\right)^4\times3^{12}-\left(2\times3\right)^{11}}\)
\(=\frac{2^{12}\times3^{10}+2^3\times5\times3\times2^9\times3^9}{2^{12}\times3^{12}-2^{11}\times3^{11}}\)
\(=\frac{2^{12}\times3^{10}\times\left(1+5\right)}{2^{11}\times3^{11}\times\left(2\times3-1\right)}\)
\(=\frac{2\times6}{3\times5}\)
\(=\frac{4}{5}\)
Học tốt nhé
8)\(\frac{4}{9}:\left(-\frac{1}{7}\right)+6\frac{5}{9}:\left(-\frac{1}{7}\right)\)
=\(\frac{4}{9}:\left(-\frac{1}{7}\right)+\frac{59}{9}:\left(-\frac{1}{7}\right)\)
=\(\left(\frac{4}{9}+\frac{59}{9}\right).\left(-7\right)\)
=7.(-7)
=-49
\(\left(\dfrac{3^2.3^4}{6^5.9}\right)^4:\left(\dfrac{2^4}{64}\right)^{12}\)
=\(\left(\dfrac{3^4}{6^5}\right)^4:\left(\dfrac{16}{64}\right)^{12}\)
=\(\left(\dfrac{1}{96}\right)^4:\left(\dfrac{1}{4}\right)^{12}\)
=\(\dfrac{1}{96^4}:\dfrac{1}{4^{12}}\)
=\(\dfrac{4^{12}}{96^4}\)
Ta có :
\(A=\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}=\frac{2^{12}.3^{10}+2^3.3.5.2^9.3^9}{2^{12}.3^{12}+2^{11}.3^{11}}=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}+2^{11}.3^{11}}=\frac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}\left(6+1\right)}=\frac{12}{21}=\frac{4}{7}\)
Chúc bạn học tốt ~
a: \(A=\dfrac{2^{12}\cdot3^{10}+2^3\cdot2^9\cdot3^9\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{11}\cdot3^{11}\cdot7}\)
\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)
b: \(B=\left(\dfrac{12}{105}+\dfrac{9^{15}}{3}\right)\cdot\dfrac{1}{3}\cdot\dfrac{6^8}{6^4\cdot2^4}\)
\(=\dfrac{12+35\cdot9^{15}}{105}\cdot\dfrac{1}{3}\cdot3^4\)
\(=\dfrac{12+35\cdot9^{15}}{105}\cdot3^3=\dfrac{9\left(12+35\cdot9^{15}\right)}{35}\)
\(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{-\left(2^{12}\cdot3^{12}+2^{11}\cdot3^{11}\right)}\)
\(=-\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\left(2\cdot3+1\right)}=\dfrac{-4}{7}\)