Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(\dfrac{3}{x^2+6x+9}-\dfrac{3}{x^2-6x+9}+\dfrac{x^2+30x-27}{x^4-18x^2+81}\)
\(=\dfrac{3x^2-18x+27-3x^2-18x-27+x^2+30x-27}{\left(x+3\right)^2\cdot\left(x-3\right)^2}\)
\(=\dfrac{x^2-6x-27}{\left(x+3\right)^2\cdot\left(x-3\right)^2}=\dfrac{\left(x-9\right)\left(x+3\right)}{\left(x+3\right)^2\cdot\left(x-3\right)^2}\)
\(=\dfrac{\left(x-9\right)}{\left(x^2-9\right)\left(x-3\right)}\)
\(\frac{x^2+3x+9}{2x+10}.\frac{x+5}{x^3-27}\)
\(=\frac{x^2+3x+9}{2\left(x+5\right)}.\frac{x+5}{\left(x-3\right)\left(x^2+3x+9\right)}\)
\(=\frac{\left(x+5\right)\left(x^2+3x+9\right)}{2\left(x+5\right)\left(x-3\right)\left(x^2+3x+9\right)}\)
\(=\frac{1}{2\left(x-3\right)}\)
\(\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\left(\frac{x^2-36}{x^2+1}\right)\)
\(=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right]\left[\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\right]\)
\(=\frac{\left(6x+1\right)\left(x+6\right)+\left(6x-1\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{12x^2+12}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{12\left(x^2+1\right).\left(x-6\right)\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)\left(x^2+1\right)}\)
\(=\frac{12}{x}\)
a: \(=\dfrac{x^3-x^2+x-1}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x+2\right)\left(x+1\right)}-\dfrac{3x}{\left(x-2\right)\left(x+1\right)}+\dfrac{2x+5}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{\left(x-1\right)\left(x^2+1\right)\left(x+1\right)-x^2+4x-4-3x^2-6x+2x+5}{\left(x+2\right)\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{x^4-1-4x^2+1}{\left(x+2\right)\left(x-2\right)\left(x+1\right)}=\dfrac{x^2\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)\left(x+1\right)}\)
=x^2/x+1
b: Sửa đề: \(\dfrac{19x^2-30x+9}{2x^3+54}-\dfrac{x-3}{2x^2+6x}-\dfrac{3x^2}{2x^2-6x+18}\) \(=\dfrac{19x^2-30x+9}{2\left(x+3\right)\left(x^2-3x+9\right)}-\dfrac{x-3}{2x\left(x+3\right)}-\dfrac{3x^2}{2\left(x^2-3x+9\right)}\)
\(=\dfrac{19x^3-30x^2+9x-\left(x-3\right)\left(x^2-3x+9\right)-3x^3\left(x+3\right)}{2x\left(x+3\right)\left(x^2-3x+9\right)}\)
\(=\dfrac{19x^3-30x^2+9x-3x^4-9x^3-\left(x^3-3x^2+9x-3x^2+9x-27\right)}{2x\left(x+3\right)\left(x^2-3x+9\right)}\)
\(=\dfrac{-3x^4+10x^3-30x^2+9x-x^3+6x^2-18x+27}{2x\left(x+3\right)\left(x^2-3x+9\right)}\)
\(=\dfrac{-3x^4+10x^3-24x^2-9x+27}{2x\left(x+3\right)\left(x^2-3x+9\right)}\)
a/ ĐKXĐ: \(x\ne2;3\)
\(\dfrac{x+3}{x-2}+\dfrac{5}{\left(x-2\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{\left(x+3\right)\left(x-3\right)+5}{\left(x-2\right)\left(x-3\right)}=0\)
\(\Leftrightarrow x^2-9+5=0\Leftrightarrow x^2=4\Rightarrow\left[{}\begin{matrix}x=-2\\x=2\left(l\right)\end{matrix}\right.\)
b/ ĐKXĐ: \(x\ne\pm\dfrac{3}{4}\)
\(\dfrac{12x^2+30x-21}{\left(4x-3\right)\left(4x+3\right)}+\dfrac{3x-7}{4x-3}-\dfrac{6x+5}{4x+3}=0\)
\(\Leftrightarrow12x^2+30x-21+\left(3x-7\right)\left(4x+3\right)-\left(6x+5\right)\left(4x-3\right)=0\)
\(\Leftrightarrow9x-27=0\Rightarrow x=3\)
c/ ĐKXĐ: \(x\ne-1;2\)
\(\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}-\dfrac{4}{x+1}+\dfrac{2}{x-2}=0\)
\(\Leftrightarrow x+3-4\left(x-2\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow-x+13=0\)
\(\Rightarrow x=13\)
a: \(=\dfrac{x^2+3x+9}{2\left(x+5\right)}\cdot\dfrac{\left(x+5\right)}{\left(x-3\right)\left(x^2+3x+9\right)}=\dfrac{1}{2\left(x-3\right)}\)
b: \(=\dfrac{\left(6x+1\right)\left(x+6\right)+\left(6x-1\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}\cdot\dfrac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\dfrac{6x^2+37x+6+6x^2-37x+6}{x}\cdot\dfrac{1}{x^2+1}=\dfrac{12}{x}\)
Bài 1:
a) \(\dfrac{15xy}{10x^2y}\)
= \(\dfrac{3.5xy}{2.5xyx}\)
= \(\dfrac{3}{2x}\)
d) \(\dfrac{6x\left(x+5\right)^3}{2x^2\left(x+5\right)}\)
= \(\dfrac{3.2x\left(x+5\right)\left(x+5\right)^2}{x.2x\left(x+5\right)}\)
= \(\dfrac{3\left(x+5\right)^2}{x}\)
a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)
a: \(=\dfrac{x}{y\left(x-y\right)}+\dfrac{2x-y}{y\left(x-y\right)}=\dfrac{x+2x-y}{y\left(x-y\right)}=\dfrac{3x-y}{y\left(x-y\right)}\)
b: \(=\dfrac{x\left(x+3\right)}{\left(x+3\right)^2}+\dfrac{3}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x}{x+3}+\dfrac{3}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x^2-3x+3x+9-6x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x-3}{x+3}\)
c: \(=\dfrac{x+9}{\left(x-3\right)\left(x+3\right)}-\dfrac{3}{x\left(x+3\right)}\)
\(=\dfrac{x^2+9x-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x^2+9x-3x+9}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x+3}{x-3}\)
d: \(=\dfrac{x^2-1-x^2+4}{x+1}=\dfrac{3}{x+1}\)
\(A=\dfrac{3x^2-6x+17}{x^2-2x+5}\)
= \(\dfrac{3x^2-6x+15+2}{x^2-2x+5}\)
=\(\dfrac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}\)
= \(\dfrac{3\cdot\left(x^2-2x+5\right)}{x^2-2x+5}+\dfrac{2}{x^2-2x+5}\)
= \(3+\dfrac{2}{x^2-2x+5}\)
= \(3+\dfrac{2}{x^2-2x+1+4}\)
= \(3+\dfrac{2}{\left(x-1\right)^2+4}\)
vì (x-1)2 ≥ 0 ∀ x
⇔ (x-1)2 +4 ≥ 4
⇔\(\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{1}{2}\)
⇔\(3+\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{7}{2}\)
⇔ A \(\le\dfrac{7}{2}\)
⇔ Min A =\(\dfrac{7}{2}\)
khi x-1=0
⇔ x=1
vậy ....
Ta có:\(B=\dfrac{2x^2-16x+41}{x^2-8x+22}\)
\(B=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)
\(B=2-\dfrac{3}{x^2-8x+16+6}\)
\(B=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{5}{2}\)
\(\Rightarrow MINB=\dfrac{5}{2}\Leftrightarrow x=4\)
Akai Haruma Nguyễn Huy Tú Nguyễn Huy ThắngHồng Phúc NguyễnPhạm Hoàng Giang......và nhiều bạn nữa giúp mik vs
\(\dfrac{3}{x^2+6x+9}+\dfrac{2}{6x-x^2-9}+\dfrac{x^2+30x-27}{x^4-18x^2+81}\)
\(=\dfrac{3}{\left(x+3\right)^2}+\dfrac{-2}{\left(x-3\right)^2}+\dfrac{x^2+30x-27}{x^4-9x^2-9x^2+81}\)
\(=\dfrac{3}{\left(x+3\right)^2}-\dfrac{2}{\left(x-3\right)^2}+\dfrac{x^2+30x-27}{\left(x-3\right)^2\left(x+3\right)^2}\)
\(=\dfrac{3\left(x-3\right)^2}{\left(x+3\right)^2\left(x-3\right)^2}-\dfrac{2\left(x+3\right)^2}{\left(x+3\right)^2\left(x-3\right)^2}+\dfrac{x^2+30x-27}{\left(x-3\right)^2\left(x+3\right)^2}\)
\(=\dfrac{3x^2-18x+27-2x^2-12x-18+x^2+30x-27}{\left(x-3\right)^2\left(x+3\right)^2}\)
\(=\dfrac{2x^2-18}{\left(x-3\right)^2\left(x+3\right)^2}\)
\(=\dfrac{2\left(x^2-9\right)}{\left(x-3\right)^2\left(x+3\right)^2}\)
\(=\dfrac{2\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2\left(x+3\right)^2}\)
\(=\dfrac{2}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x^2-9}\)