Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a,
\(\left(\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}+...+\dfrac{2}{19\cdot21}\right)\cdot462-\left[2,04:\left(x+1,05\right)\right]:0,12=19\\ \left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{19}-\dfrac{1}{21}\right)\cdot462-\left[2,04:\left(x+1,05\right)\right]:0,12=19\\ \left(\dfrac{1}{11}-\dfrac{1}{21}\right)\cdot462-\left[2,04:\left(x+1,05\right)\right]:0,12=19\\ \dfrac{10}{231}\cdot462-\left[2,04:\left(x+1,05\right)\right]:0,12=19\\ 20-\left[2,04:\left(x+1,05\right)\right]:0,12=19\\ \left[2,04:\left(x+1,05\right)\right]:0,12=1\\ 2,04:\left(x+1,05\right)=0,12\\ x+1,05=17\\ x=15,95\)
b,
\(\dfrac{1}{24\cdot25}+\dfrac{1}{25\cdot26}+...+\dfrac{1}{29\cdot30}+x:\dfrac{1}{3}=-4\\ \dfrac{1}{24}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{26}+...+\dfrac{1}{29}-\dfrac{1}{30}+x\cdot3=-4\\ \dfrac{1}{24}-\dfrac{1}{30}+x\cdot3=-4\\ \dfrac{1}{120}+x\cdot3=-4\\ 3x=\dfrac{-481}{120}\\ x=\dfrac{-481}{360}\)
2.
a,
\(\dfrac{15}{28}-\dfrac{186}{1116}-\dfrac{121}{462}+\dfrac{189}{198}\\ =\dfrac{15}{28}-\dfrac{1}{6}-\dfrac{11}{42}+\dfrac{21}{22}\\ =\dfrac{495}{924}-\dfrac{154}{924}-\dfrac{242}{924}+\dfrac{882}{924}\\ =\dfrac{495-154-242+882}{924}\\ =\dfrac{981}{924}\\ =\dfrac{327}{308}\)
b,
\(\left(1+\dfrac{1}{1\cdot3}\right)\cdot\left(1+\dfrac{1}{2\cdot4}\right)\cdot\left(1+\dfrac{1}{3\cdot5}\right)\cdot...\cdot\left(1+\dfrac{1}{99\cdot101}\right)\\ =\left(\dfrac{1\cdot3}{1\cdot3}+\dfrac{1}{1\cdot3}\right)\cdot\left(\dfrac{2\cdot4}{2\cdot4}+\dfrac{1}{2\cdot4}\right)\cdot\left(\dfrac{3\cdot5}{3\cdot5}+\dfrac{1}{3\cdot5}\right)\cdot...\cdot\left(\dfrac{99\cdot101}{99\cdot101}+\dfrac{1}{99\cdot101}\right)\\ =\left(\dfrac{2^2-1}{1\cdot3}+\dfrac{1}{1\cdot3}\right)\cdot\left(\dfrac{3^2-1}{2\cdot4}+\dfrac{1}{2\cdot4}\right)\cdot\left(\dfrac{4^2-1}{3\cdot5}+\dfrac{1}{3\cdot5}\right)\cdot...\cdot\left(\dfrac{100^2-1}{99\cdot101}+\dfrac{1}{99\cdot101}\right)\)\(=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot...\cdot\dfrac{100^2}{99\cdot101}\\ =\dfrac{2\cdot2}{1\cdot3}\cdot\dfrac{3\cdot3}{2\cdot4}\cdot\dfrac{4\cdot4}{3\cdot5}\cdot...\cdot\dfrac{100\cdot100}{99\cdot101}\\ =\dfrac{2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot...\cdot100\cdot100}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot99\cdot101}\\ =\dfrac{\left(2\cdot3\cdot4\cdot...\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot...\cdot100\right)}{\left(1\cdot2\cdot3\cdot...\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot...\cdot101\right)}\\ =\dfrac{100\cdot2}{1\cdot101}\\ =\dfrac{200}{101}\)
mình ghi nhầm nên các bạn cứ hết hai phân số là một câu nhé ví dụ như \(\dfrac{-5}{8}\):\(\dfrac{15}{4}\)
a, (x + 1) + (x + 4) + ... + (x + 28) = 155
x + 1 + x + 4 + ... + x + 28 = 155
(x + x + x + ... + x) + (1 + 4 + ... + 28) = 155
x . 10 + 145 = 155
x . 10 = 155 - 145
x . 10 = 10
x = 10 : 10
x = 1
\(\dfrac{1}{2}N=\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(\dfrac{1}{2}N=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\dfrac{1}{2}N=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\)
N=\(\dfrac{2}{5}:\dfrac{1}{2}=\dfrac{4}{5}\)
a) \(0,2\cdot\dfrac{15}{36}-\left(\dfrac{2}{5}+\dfrac{2}{3}\right):1\dfrac{1}{5}\)
\(=\dfrac{1}{12}-\dfrac{16}{15}\cdot\dfrac{5}{6}\)
\(=\dfrac{1}{12}-\dfrac{8}{9}\)
\(=\dfrac{-29}{36}\)
b) \(1\dfrac{13}{15}\cdot0,75-\left(\dfrac{8}{15}+0,25\right)\cdot\dfrac{24}{27}\)
\(=\dfrac{28}{15}\cdot0,75-\dfrac{47}{60}\cdot\dfrac{24}{27}\)
\(=\dfrac{7}{5}-\dfrac{94}{135}\)
\(=\dfrac{19}{27}\)
c) \(5:\left(4\dfrac{3}{4}-1\dfrac{25}{28}\right)-1\dfrac{3}{8}:\left(\dfrac{3}{8}+\dfrac{9}{20}\right)\)
\(=5\cdot\dfrac{7}{20}-\dfrac{11}{8}\cdot\dfrac{40}{33}\)
\(=\dfrac{7}{4}-\dfrac{5}{3}\)
\(=\dfrac{1}{12}\)
\(a,\dfrac{7}{35},\dfrac{18}{54},\dfrac{-15}{125},\dfrac{-4}{25}\)
Các thừa số đã tối giản : \(\dfrac{-4}{25}\)
\(\dfrac{7}{35}=\dfrac{7:7}{35:7}=\dfrac{1}{5}\) , \(\dfrac{18}{54}=\dfrac{18:18}{54:18}=\dfrac{1}{3}\)
\(\dfrac{-15}{125}=\dfrac{-15:5}{125:5}=\dfrac{-3}{25}\)
\(b,\dfrac{27}{45},\dfrac{21}{28},\dfrac{8}{14},\dfrac{18}{-60},\dfrac{-270}{360}\)
Các thừa số đã tối giản là : ko có
\(\dfrac{27}{45}=\dfrac{27:9}{45:9}=\dfrac{3}{5}\) , \(\dfrac{21}{28}=\dfrac{21:7}{28:7}=\dfrac{3}{4}\)
\(\dfrac{8}{14}\)\(=\dfrac{8:2}{14:2}=\dfrac{4}{7}\) , \(\dfrac{18}{-60}=\dfrac{18:6}{-60:6}=\dfrac{3}{-10}=\dfrac{-3}{10}\)
\(\dfrac{-270}{360}=\dfrac{-270:90}{360:90}=\dfrac{-3}{4}\)
\(c,\dfrac{3.4+3.7}{6.5+9}\) = \(\dfrac{3.\left(4+7\right)}{30+9}\) = \(\dfrac{3.11}{39}\) = \(\dfrac{3.11}{3.13}=\dfrac{11}{13}\)
\(\dfrac{-63}{81},\dfrac{9.6}{9.35},\dfrac{7.2+8}{2.14.5}\)
Các p/s đã tối giản : ko có
\(\dfrac{-63}{81}=\dfrac{-63:9}{81:9}=\dfrac{-7}{9}\) , \(\dfrac{9.6}{9.35}=\dfrac{6}{35}\)
\(\dfrac{7.2+8}{2.14.5}=\dfrac{14+8}{28.5}=\dfrac{22}{140}=\dfrac{11}{70}\)
\(\dfrac{15}{28}-\dfrac{186}{1116}-\dfrac{121}{462}+\dfrac{198}{189}\)
\(=\dfrac{31}{84}-\dfrac{121}{462}+\dfrac{198}{189}\)
\(=\dfrac{3}{28}+\dfrac{198}{189}\)
\(=\dfrac{97}{84}\)