Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Ban đầu: \(\varphi_{u/i}=-\dfrac{\pi}{4}-(-\dfrac{\pi}{2})=\dfrac{\pi}{4}(rad)\)
\(\Rightarrow \tan\varphi = \dfrac{-Z_C}{R}=-1\Rightarrow Z_C= R\)
Tổng trở của mạch: \(Z=\sqrt{R^2+Z_C^2}=R\sqrt 2\)
* Khi mắc nối tiếp vào mạch tụ thứ 2 có điện dung bằng điện dung đã cho thì: \(Z_C'=2Z_C=2R\)
Tổng trở: \(Z'=\sqrt{R^2+Z_C'^2}=\sqrt{R^2+(2R)^2}=R\sqrt 5\)
\(\Rightarrow \dfrac{I'}{I}=\dfrac{Z}{Z'}=\dfrac{\sqrt 2}{\sqrt 5}\)
\(\Rightarrow I'=0,63I\)
\(\Rightarrow I_0'=0,63I_0\)
Độ lệch pha giữa u và i: \(\tan\varphi = \dfrac{-Z_C'}{R}=2\)
\(\Rightarrow \varphi{_{u/i}} = -0,352\pi(rad)\Rightarrow \varphi{_{i/u}} = 0,352\pi(rad)\)
\(\Rightarrow \varphi i'=\varphi _u+0,352\pi=-0,5\pi+0,352\pi=-0,147\pi\)(rad)
Vậy biểu thức của dòng điện là:
\(i=0,63I_0\cos(\omega t -0,147\pi) (A)\)
Chọn A.
Đoạn mạch chỉ có cuộn cảm thuần thì i trễ pha \(\frac{\pi}{2}\)so với u.
\(I_0=\frac{U_0}{Z_L}=\frac{U_0}{\omega L}\)
Suy ra \(i=\frac{U_0}{\omega L}\cos\left(\omega t-\frac{\pi}{2}\right)\)
\(\varphi=\varphi_u-\varphi_i=0-\left(-\frac{\pi}{4}\right)=\frac{\pi}{4}\)
\(\tan\varphi=\frac{Z_L-Z_C}{R}=1\Rightarrow Z_L-Z_C=R\)
\(\Rightarrow Z=\sqrt{R^2+\left(Z_L-Z_C\right)^2}=R\sqrt{2}\)
Mà \(Z=\frac{U}{I}=\frac{200}{2}=100\Rightarrow R=\frac{100}{\sqrt{2}}=50\sqrt{2}\)
Công suất tiêu thụ của biến trở:
$P_R=\frac{U^2R}{(R+r)^2+(Z_L-Z_C)^2}=\frac{U^2}{R+\frac{r^2+(Z_L-Z_C)^2}{R}+2r}\leq \frac{U^2}{2\sqrt{r^2+(Z_L-Z_C)^2}+2r}$
Do đó, $P_R$ đạt giá trị lớn nhất khi $R=\sqrt{(Z_L-Z_c)^2+r^2}\Leftrightarrow Z_{AB}^2=75^2+(75+r)^2-r^2$
Giờ chỉ cần thử các giá trị nguyên ta thu được $r=21\Omega$ và $Z_{AB}=120\Omega$, tức đáp án $B$ là đáp án đúng.
Hạ bậc \(i=4\cos^2\left(\omega t\right)\)
\(\Rightarrow i=4\cos^2\omega t=2+2\cos\left(2\omega t\right)\)
Gọi R là điện trở thuần của mạch; P là công suất tiêu thụ của mạch.
\(P=P_1+P_2\)
\(P_1=R.2^2=4R\)
\(P_2=R.\left(\sqrt{2}\right)^2=2R\)
Vậy \(P=4R+2R=6R=I^2R\) nên ta có \(I=\sqrt{6}\) A
Chọn B
R1 + R2 = U2/P => U=120 V
R1R2 =(ZL-ZC)2=5184
Cos$1 = R1/(R12+R1R2)0.5=0.6
Cos$2=R2/(R22+R1R2)0.5=0.8
\(x'=-\omega A\sin\left(\omega t+\varphi_0\right)\)