\(y=\frac{\ln x}{x}+\frac{1+\ln x}{1-\ln x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

\(y'=\frac{\frac{1}{x}x-\ln x}{x^2}+\frac{-\frac{1}{x}\left(x+\ln x\right)-\frac{1}{x}\left(x-\ln x\right)}{\left(1+\ln_{ }x\right)^2}=\frac{1-\ln x}{x^2}+\frac{-2}{x\left(1+\ln_{ }x\right)^2}\)

5 tháng 5 2016

xét hàm số y=ln(\(x+\sqrt{1+x^2}\))

Ta có

y'=\(\frac{1}{x+\sqrt{1+x^2}}\left(1+\frac{x}{\sqrt{1+x^2}}\right)=\frac{1}{x+\sqrt{1+x^2}}.\frac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}}=\frac{1}{\sqrt{1+x^2}}\)

12 tháng 5 2016

\(y'=\frac{\frac{2}{2x-1}.\sqrt{2x-1}-\frac{1}{\sqrt{2x-1}}\ln\left(2x-1\right)}{2x-1}=\frac{2-\ln\left(2x-1\right)}{\left(2x-1\right)\sqrt{2x-1}}\)

12 tháng 5 2016

\(y'=\frac{1+\frac{x}{\sqrt{1+x^2}}}{x+\sqrt{1+x^2}}+\frac{2\cos2x}{\sin2x\ln3}=\frac{1}{\sqrt{1+x^2}}+\frac{2\cot2x}{\ln3}\)

12 tháng 5 2016

\(y'=\frac{2x}{x^2+1}+\frac{2x-1}{\left(x^2-x+1\right)\ln2}\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln x - \ln {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \frac{x}{{{x_0}}}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{{\ln \frac{x}{{{x_0}}}}}{{\ln e}}}}{{x - {x_0}}} = \frac{1}{{\ln e}}.\mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \frac{x}{{{x_0}}}}}{{x - {x_0}}}\\ = \frac{1}{{\ln e}}\mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \left( {1 + \frac{x}{{{x_0}}} - 1} \right)}}{{x - {x_0}}} = \frac{1}{{\ln e}}\mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{x}{{{x_0}}} - 1}}{{x - {x_0}}} = \frac{1}{{\ln e}}.\mathop {\lim }\limits_{u \to 0} \frac{{\frac{{x - {x_0}}}{{{x_0}}}}}{{x - {x_0}}} = \frac{1}{{{x_0}\ln e}}\\ \Rightarrow \left( {\ln x} \right)' = \frac{1}{{x\ln e}} = \frac{1}{x}\end{array}\)

12 tháng 5 2016

Đặt \(t=x-e\Rightarrow\begin{cases}x=t+e\\x\rightarrow e;t\rightarrow0\end{cases}\)

\(\Rightarrow L=\lim\limits_{t\rightarrow0}\frac{\ln\left(t+e\right)-\ln e}{t}=\lim\limits_{t\rightarrow0}\frac{\ln\left(\frac{t+e}{e}\right)}{t}=\lim\limits_{t\rightarrow0}\left[\frac{\ln\left(1+\frac{t}{e}\right)}{\frac{t}{e}}\right]=\frac{1}{e}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Với x > 0 bất kì và \(h = x - {x_0}\) ta có

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {{x_0} + h} \right) - \ln {x_0}}}{h}\\ = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {1 + \frac{h}{{{x_0}}}} \right)}}{{\frac{h}{{{x_0}}}.{x_0}}} = \mathop {\lim }\limits_{h \to 0} \frac{1}{{{x_0}}}.\mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {1 + \frac{h}{{{x_0}}}} \right)}}{{\frac{h}{{{x_0}}}}} = \frac{1}{{{x_0}}}\end{array}\)

Vậy hàm số \(y = \ln x\) có đạo hàm là hàm số \(y' = \frac{1}{x}\)

b) Ta có \({\log _a}x = \frac{{\ln x}}{{\ln a}}\) nên \(\left( {{{\log }_a}x} \right)' = \left( {\frac{{\ln x}}{{\ln a}}} \right)' = \frac{1}{{x\ln a}}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^x} - {e^{{x_0}}}}}{{x - {x_0}}}\)

Đặt \(x = {x_0} + \Delta x\). Ta có:

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0} + \Delta x}} - {e^{{x_0}}}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0}}}.{e^{\Delta x}} - {e^{{x_0}}}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0}}}.\left( {{e^{\Delta x}} - 1} \right)}}{{\Delta x}}\\ &  = \mathop {\lim }\limits_{\Delta x \to 0} {e^{{x_0}}}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - 1}}{{\Delta x}} = {e^{{x_0}}}.1 = {e^{{x_0}}}\end{array}\)

Vậy \({\left( {{e^x}} \right)^\prime } = {e^x}\) trên \(\mathbb{R}\).

b) Với bất kì \({x_0} > 0\), ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln {\rm{x}} - \ln {{\rm{x}}_0}}}{{x - {x_0}}}\)

Đặt \(x = {x_0} + \Delta x\). Ta có:

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {{x_0} + \Delta x} \right) - \ln {{\rm{x}}_0}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {\frac{{{x_0} + \Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\Delta x}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}}.\frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}}\end{array}\)

Đặt \(\frac{{\Delta x}}{{{x_0}}} = t\). Lại có: \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}} = \frac{1}{{{x_0}}};\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}} = \mathop {\lim }\limits_{t \to 0} \frac{{\ln \left( {1 + t} \right)}}{t} = 1\)

Vậy \(f'\left( {{x_0}} \right) = \frac{1}{{{x_0}}}.1 = \frac{1}{{{x_0}}}\)

Vậy \({\left( {\ln x} \right)^\prime } = \frac{1}{x}\) trên khoảng \(\left( {0; + \infty } \right)\).

12 tháng 5 2016

\(L=\lim\limits_{x\rightarrow0}\frac{\ln\left(1+x^3\right)}{2x}=\lim\limits_{x\rightarrow0}\frac{\ln\left(1+x^3\right)}{x^3.\frac{2}{x^2}}=\lim\limits_{x\rightarrow0}\left[\frac{\ln\left(1+x^3\right)}{x^3}.\frac{x^3}{2}\right]=1.0=0\)