Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 3:
a, đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
A/D tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
\(\dfrac{4x}{2x+9}=8\)
=>16x+72=4x
=>12x=-72
=>x=-6
\(\dfrac{9^{x+9}}{3^{5y}}=243\)
\(\Leftrightarrow\dfrac{9^{-6+9}}{3^{5y}}=243\)
\(\Leftrightarrow3^{5y}=\dfrac{9^3}{243}=3\)
=>5y=1
hay y=1/5
=>xy=-6/5
\(\left(x-2\right)\left(y+3\right)=5\)
\(\Rightarrow x-2;y+3\inƯ\left(5\right)\)
\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét ước
\(xy-6x-3y=7\)
\(\Rightarrow xy-6x-3y+18=25\)
\(\Rightarrow x\left(y-6\right)-3\left(y-6\right)=25\)
\(\Rightarrow\left(x-3\right)\left(y-6\right)=25\)
Xét ước
\(\dfrac{a}{2}-\dfrac{1}{b}=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{b}=\dfrac{3}{4}+\dfrac{a}{2}\)
\(\Rightarrow\dfrac{1}{b}=\dfrac{3}{4}+\dfrac{2a}{4}\)
\(\Rightarrow\dfrac{1}{b}=\dfrac{3+2a}{4}\)
\(\Rightarrow b\left(3+2a\right)=4\)
Xét ước
\(\dfrac{-2}{3}\cdot\left(x-\dfrac{1}{4}\right)=\dfrac{1}{3}\left(2x-1\right)\)
\(-\dfrac{2}{3}x+\dfrac{1}{6}=\dfrac{2}{3}x-\dfrac{1}{3}\\ -\dfrac{2}{3}x+\dfrac{1}{6}-\dfrac{2}{3}x+\dfrac{1}{3}=0\)
\(-\dfrac{4}{3}x+\dfrac{1}{2}=0\\ -\dfrac{4}{3}x=-\dfrac{1}{2}\\ x=\dfrac{3}{8}\)
\(\dfrac{1}{5}2^x+\dfrac{1}{3}2^{x+1}=\dfrac{1}{5}2^7+\dfrac{1}{3}2^8\)
\(\dfrac{1}{5}2^x+\dfrac{1}{3}2^x\cdot2=\dfrac{1}{5}2^7+\dfrac{1}{3}2^7\cdot2\)
\(2^x\left(\dfrac{1}{5}+\dfrac{1}{3}\cdot2\right)=2^7\left(\dfrac{1}{5}+\dfrac{1}{3}\cdot2\right)\)
\(2^x=2^7\\ x=7\)
Bài 3: A=2018-|x+2019|. Vì |x+2019|\(\ge\)0 nên -|x+2019|\(\le\)0=>2018-|x+2019|\(\le\) 2. Vậy A có GTLN = 2 khi x+2019=0 hay x=-2019. B=-10-\(\left|2x-\dfrac{1}{1009}\right|\). Vì \(\left|2x-\dfrac{1}{1009}\right|\ge0\Rightarrow-\left|2x-\dfrac{1}{1009}\right|\le0\Rightarrow-10-\left|2x-\dfrac{1}{1009}\right|\le-10\). Vậy B có GTLN = -10 khi 2x-\(\dfrac{1}{1009}=0\) => \(2x=\dfrac{1}{1009}\Rightarrow x=\dfrac{1}{1009}:2=\dfrac{1}{2018}\)
Bài 2: A=\(\left|5x+1\right|-\dfrac{3}{8}\). Vì \(\left|5x+1\right|\ge0\Rightarrow\left|5x+1\right|-\dfrac{3}{8}\ge\dfrac{-3}{8}\). Vậy A có GTNN = \(\dfrac{-3}{8}\) khi 5x+1= 0=> 5x= -1=> x = \(\dfrac{-1}{5}\). B=\(\left|2-\dfrac{1}{6}x\right|+0,25\) , vì \(\left|2-\dfrac{1}{6}x\right|\ge0\Rightarrow\left|2-\dfrac{1}{6}x\right|+0,25\ge0,25\) . Vậy B có GTNN = 0,25 khi \(2-\dfrac{1}{6}x=0\Rightarrow\dfrac{x}{6}=2\Rightarrow x=2.6=12\)
b) \(\dfrac{7x-21}{14x-42}=\dfrac{2}{4}\)
\(\Leftrightarrow\dfrac{7\left(x-3\right)}{14\left(x-3\right)}=\dfrac{2}{4}\)
Ở tử và mẫu đều có chung x-3 nên loại
\(\Rightarrow\dfrac{7}{14}=\dfrac{2}{4}\Leftrightarrow\dfrac{2}{4}=\dfrac{2}{4}\) (đpcm)
c) \(\dfrac{9x-18}{18y-54}=\dfrac{2x-4}{4y-12}\)
\(\Leftrightarrow\dfrac{9\left(x-2\right)}{18\left(y-3\right)}=\dfrac{2\left(x-2\right)}{4\left(y-3\right)}\)
Ở tử VT và VP đều có tử là x-2 và mẫu là y-3 nên loại
\(\Leftrightarrow\dfrac{9}{18}=\dfrac{2}{4}\Leftrightarrow\dfrac{1}{2}=\dfrac{1}{2}\) (đpcm)
Ta có : B=\(5x+18xy+5y\)
=\(5.\left(x+y\right)+18xy\)
Thay x+y=\(\dfrac{-3}{5}\) và xy=2 vào B ta có:
B=\(5.\dfrac{-3}{5}+18.2\)
=\(-3+36\)
= 33