Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai rồi em (hoặc là thiếu dữ liệu)
Không thể tính được khoảng cách giữa 2 hòn đảo chỉ với các số liệu này.
A B x z D C
Giả sử người đó đứng ở vị trí A, hòn đảo thứ nhất ở vị trí B với \(\widehat{BAx}=40^0\) và \(AB=115\) nên điểm B cố định
Khi đó, nếu ta dựng tia Az sao cho \(\widehat{xAz}=60^0\) thì hòn đảo thứ 2 nằm ở 1 vị trí bất kì trên tia Az đều thỏa mãn bài toán
Nghĩa là khoảng cách giữa 2 hòn đảo thay đổi và không thể tính được. Em có thể đặt hòn đảo thứ 2 ở C hay D hay 1 điểm nào đó tùy thích. Rõ ràng là các đoạn BC và BD khác nhau về độ dài nhưng đều thỏa mãn yêu cầu bài toán.
Khoảng cách từ đảo đến chân đèn là:
\(38\cdot\cot30^0\simeq65,818\left(cm\right)\)
*gọi: A là đỉnh ngọn đèn biển; B là chân đèn; C là hòn đảo
>>tam giác ABC vuông tại B có: AB=38m; góc ACB=30 độ
>>khoảng cách từ đảo đến chân đèn:
AC=AB/tan30=38/tan30=38căn3=65,8179m
Khoảng cách từ đảo đến chân cột đèn biển là cạnh kề với góc 30 ° , chiều cao của cột đèn biển là cạnh đối diện với góc 30 °
Vậy khoảng cách từ đảo đến chân đèn là:
38.cotg 30 ° ≈ 65,818 (cm)
Xét ΔCED có \(\widehat{C}+\widehat{D}+\widehat{E}=180^0\)
=>\(\widehat{D}+105^0+45^0=180^0\)
=>\(\widehat{D}=30^0\)
Xét ΔCED có \(\dfrac{CE}{sinD}=\dfrac{CD}{sinE}\)
=>\(\dfrac{CD}{sin45}=\dfrac{20}{sin30}\)
=>\(\dfrac{CD}{sin45}=\dfrac{20}{\dfrac{1}{2}}=40\)
=>\(CD=40\cdot sin45=40\cdot\dfrac{\sqrt{2}}{2}=20\sqrt{2}\)
a) Khoảng cách giữa 2 vị trí đó là :
\(\frac{20000}{180}.\left(72-42\right)\simeq2800\left(km\right)\)
b) Bán kính của Trái Đất là :
\(\frac{20000}{3,14}\simeq6400\left(km\right)\)
Độ dài đường xích đạo là :
\(20000.2=40000\left(km\right)\)
Vì trái đất là hình cầu :
Thể tích hình cầu được tính dưới dạng : \(V=\frac{4}{3}.3,14.R^3\)( R là bán kính )
Vậy thể tích Trái Đất là :
\(\frac{4}{3}.3,14.\left(6400\right)^3\simeq1097509547000\left(km^3\right)\)
Hướng dẫn thôi : \(\text{Ta có :}V_{\text{nón}}=\frac{1}{3}\pi R^2h=\frac{1}{2}\pi(6^2-x^2)(6+x)=-x^3-6x^2+36x+216=f(x)\)
\(\Rightarrow f'(x)=-3x^2-12x+36=0\Rightarrow x=2\)
Vậy khối nón có thể tích lớn nhất , giá trị của x bằng 2
Xét \(\Delta ABO':\)
\(AB\ge O'A-O'B\left(1\right)\)
Xét \(\Delta OAO':\)
\(O'A\ge O'O-OA\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow AB\ge O'O-OA-O'B=950-500-300=150\left(m\right)\)
Dấu '=' xảy ra khi \(4\) điểm \(O;A;B;O'\) thẳng hàng
\(\Rightarrow\) Xây cầu có chiều dài là \(150\left(m\right)\) trên đoạn nối 2 tâm cầu 2 hòn đảo (O'O) thì cây cầu sẽ ngắn nhất.