\(^4\)+2x\(^3\)+10x-25):(x
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2021

\(=\left(x^4+5x^2+2x^3+10x-5x^2-25\right):\left(x^2+5\right)\\ =\left[x^2\left(x^2+5\right)+2x\left(x^2+5\right)-5\left(x^2+5\right)\right]:\left(x^2+5\right)\\ =x^2+2x-5\)

19 tháng 10 2018

BẠN ĐỢI MK XÍU NHA

19 tháng 10 2018

1

a) x^2+2x-5                                b) x^2+x+7 9 (dư 8)

2

x=2; x = -(3*căn bậc hai(7)*i+1)/2;x = (3*căn bậc hai(7)*i-1)/2;

3

a=2

5 tháng 8 2020

Bài 2:

a) Vì x = 79 => x + 1 = 80

\(P\left(x\right)=x^7-80x^6+80x^5-80x^4+.....+80x+15\)

\(\Rightarrow P\left(x\right)=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+.....+\left(x+1\right)x+15\)

\(=x^7-x^7-x^6+x^6+x^5-x^5-x^4+....+x^2+x+15\)

\(=x+15\)

Thay x = 79 vào đa thức ta được:

79 + 15 = 94

b) Vì x = 9 => x + 1 = 10

\(Q\left(x\right)=x^{14}-10x^{13}+10x^{12}-10x^{11}+.....+10x^2-10x+10\)

\(\Rightarrow Q\left(x\right)=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+....+\left(x+1\right)x^2-\left(x+1\right)x+10\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+....+x^3+x^2-x^2-x+10\)

\(=-x+10\)

\(=-9+10=1\)

P/s: Ko chắc nhé!

5 tháng 8 2020

Bài 1:

a/ \(\left(2x-1\right)\left(x^2-x+1\right)-2x^3+3x^2=2\)

\(\Rightarrow2x\left(x^2-x+1\right)-1\left(x^2-x+1\right)-2x^3+3x^2=2\)

\(\Rightarrow2x^3-2x^2+2x-x^2+x-1-2x^3+3x^2=2\)

\(\Rightarrow3x-1=2\)

\(\Rightarrow3x=2+1=3\)

\(\Rightarrow x=3:3=1\)

b/ \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)

\(\Rightarrow x\left(x^2+2x+4\right)+1\left(x^2+2x+4\right)-x^3-3x^2+16=0\)

\(\Rightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)

\(\Rightarrow6x+20=0\)

\(\Rightarrow6x=0-20=-20\)

\(\Rightarrow x=-\frac{20}{6}=-\frac{10}{3}\)

c/ \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Rightarrow\left[x\left(x+2\right)+1\left(x+2\right)\right]\left(x+5\right)-x^3-8x^2=27\)

\(\Rightarrow\left(x^2+2x+x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Rightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Rightarrow x^2\left(x+5\right)+3x\left(x+5\right)+2\left(x+5\right)-x^3-8x^2=27\)

\(\Rightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2=27\)

\(\Rightarrow17x+10=27\)

\(\Rightarrow17x=27-10=17\)

\(\Rightarrow x=17:17=1\)

4 tháng 7 2019

nếu sai ở đâu sửa giúp mình vớihahahahahaha

4 tháng 7 2019

nhanh mình đang cần gấp

29 tháng 6 2017

1) \(4x^2+4x+1=\left(2x+1\right)^2\)

2)\(9x^2-24xy+16y^2=\left(3x-4y\right)^2\)

3)\(-x^2+10x-25=-\left(x-5\right)^2\)

4)\(1+12x+36x^2=\left(1+6x\right)^2\)

5) \(\dfrac{x^2}{4}+2xy+4y^2=\left(\dfrac{x}{2}+2y\right)^2\)

6) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)

29 tháng 6 2017

bài toán iêu cầu j z ??? bn

19 tháng 2 2020

Bài 3 :

Ta có : \(A=x^2+x+2012\)

=> \(A=x^2+x+\left(\frac{1}{2}\right)^2+\frac{8047}{4}\)

=> \(A=\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\)

- Ta thấy : \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

=> \(\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\ge\frac{8047}{4}\forall x\)

- Dấu "=" xảy ra <=> \(x+\frac{1}{2}=0\)

<=> \(x=-\frac{1}{2}\)

Vậy MinA = \(\frac{8047}{4}\) <=> x = \(-\frac{1}{2}\) .

Bài 1 :

a, Ta có : \(\left(3x-2\right)\left(4+5x\right)=0\)

=> \(\left[{}\begin{matrix}3x-2=0\\4+5x=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}3x=2\\5x=-4\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=-\frac{4}{5}\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = \(\frac{2}{3}\), x = \(-\frac{4}{5}\) .

b,- ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)

=> \(x\ne\pm1\)

Ta có : \(\frac{x+1}{x-1}-\frac{4}{x+1}=\frac{3-x^2}{1-x^2}\)

=> \(\frac{\left(x+1\right)^2}{x^2-1}-\frac{4\left(x-1\right)}{x^2-1}=\frac{x^2-3}{x^2-1}\)

=> \(\left(x+1\right)^2-4\left(x-1\right)=x^2-3\)

=> \(x^2+2x+1-4x+4=x^2-3\)

=> \(-2x=-3-5\)

=> \(x=4\left(TM\right)\)

Vậy phương trình có nghiệm là x = 4 .

c, Ta có : \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}-\frac{2-10x}{2014}\)

=> \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}+\frac{10x-2}{2014}\)

=> \(\frac{10x+3}{2009}+1+\frac{10x-1}{2013}+1=\frac{10x+1}{2011}+1+\frac{10x-2}{2014}+1\)

=> \(\frac{10x+3}{2009}+\frac{2009}{2009}+\frac{10x-1}{2013}+\frac{2013}{2013}=\frac{10x+1}{2011}+\frac{2011}{2011}+\frac{10x-2}{2014}+\frac{2014}{2014}\)

=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}=\frac{10x+2012}{2011}+\frac{10x+2012}{2014}\)

=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}-\frac{10x+2012}{2011}-\frac{10x+2012}{2014}=0\)

=> \(\left(10x+2012\right)\left(\frac{1}{2009}+\frac{1}{2013}-\frac{1}{2011}-\frac{1}{2014}\right)=0\)

=> \(10x+2012=0\)

=> \(x=-\frac{2012}{10}\)

Vậy phương trình có nghiệm là x = \(-\frac{2012}{10}\) .

19 tháng 2 2020

Bài 3:

Giải:

Ta có : A = x2 + x + 2012

= x2 + 2.\(\frac{1}{2}\).x + \(\frac{1}{4}\) + \(\frac{8047}{4}\)

= (x + \(\frac{1}{2}\))2 + \(\frac{8047}{4}\)\(\frac{8047}{4}\)

⇒ Amin = \(\frac{8047}{4}\) ⇔ (x + \(\frac{1}{2}\))2 = 0 ⇔ x = \(-\frac{1}{2}\)

Vậy Amin = \(\frac{8047}{4}\) tại x = \(-\frac{1}{2}\)

Chúc bạn học tốt@@

Bài 1:

a) Ta có: \(2,3x-2\left(0,7+2x\right)=3,6-1,7x\)

\(\Leftrightarrow2,3x-1,4-4x-3,6+1,7x=0\)

\(\Leftrightarrow-5=0\)(vl)

Vậy: \(x\in\varnothing\)

b) Ta có: \(\frac{4}{3}x-\frac{5}{6}=\frac{1}{2}\)

\(\Leftrightarrow\frac{4}{3}x=\frac{1}{2}+\frac{5}{6}=\frac{8}{6}=\frac{4}{3}\)

hay x=1

Vậy: x=1

c) Ta có: \(\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)

\(\Leftrightarrow\frac{9x}{90}-\frac{3x}{90}-\frac{4x}{90}-\frac{72}{90}=0\)

\(\Leftrightarrow2x-72=0\)

\(\Leftrightarrow2\left(x-36\right)=0\)

mà 2>0

nên x-36=0

hay x=36

Vậy: x=36

d) Ta có: \(\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(\Leftrightarrow12\left(10x+3\right)=8\left(7-8x\right)\)

\(\Leftrightarrow120x+36=56-64x\)

\(\Leftrightarrow120x+36-56+64x=0\)

\(\Leftrightarrow184x-20=0\)

\(\Leftrightarrow184x=20\)

hay \(x=\frac{5}{46}\)

Vậy: \(x=\frac{5}{46}\)

e) Ta có: \(\frac{10x-5}{18}+\frac{x+3}{12}=\frac{7x+3}{6}-\frac{12-x}{9}\)

\(\Leftrightarrow\frac{2\left(10x-5\right)}{36}+\frac{3\left(x+3\right)}{36}-\frac{6\left(7x+3\right)}{36}+\frac{4\left(12-x\right)}{36}=0\)

\(\Leftrightarrow2\left(10x-5\right)+3\left(x+3\right)-6\left(7x+3\right)+4\left(12-x\right)=0\)

\(\Leftrightarrow20x-10+3x+9-42x-18+48-4x=0\)

\(\Leftrightarrow-23x+29=0\)

\(\Leftrightarrow-23x=-29\)

hay \(x=\frac{29}{23}\)

Vậy: \(x=\frac{29}{23}\)

f) Ta có: \(\frac{x+4}{5}-x-5=\frac{x+3}{2}-\frac{x-2}{2}\)

\(\Leftrightarrow\frac{2\left(x+4\right)}{10}-\frac{10x}{10}-\frac{50}{10}=\frac{25}{10}\)

\(\Leftrightarrow2x+8-10x-50-25=0\)

\(\Leftrightarrow-8x-67=0\)

\(\Leftrightarrow-8x=67\)

hay \(x=\frac{-67}{8}\)

Vậy: \(x=\frac{-67}{8}\)

g) Ta có: \(\frac{2-x}{4}=\frac{2\left(x+1\right)}{5}-\frac{3\left(2x-5\right)}{10}\)

\(\Leftrightarrow5\left(2-x\right)-8\left(x+1\right)+6\left(2x-5\right)=0\)

\(\Leftrightarrow10-5x-8x-8+12x-30=0\)

\(\Leftrightarrow-x-28=0\)

\(\Leftrightarrow-x=28\)

hay x=-28

Vậy: x=-28

h) Ta có: \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)

\(\Leftrightarrow\frac{4\left(x+2\right)}{12}+\frac{9\left(2x-1\right)}{12}-\frac{2\left(5x-3\right)}{12}-\frac{12x}{12}-\frac{5}{12}=0\)

\(\Leftrightarrow4x+8+18x-9-10x+6-12x-5=0\)

\(\Leftrightarrow0x=0\)

Vậy: \(x\in R\)

Bài 2:

a) Ta có: \(5\left(x-1\right)\left(2x-1\right)=3\left(x+8\right)\left(x-1\right)\)

\(\Leftrightarrow5\left(x-1\right)\left(2x-1\right)-3\left(x-1\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[5\left(2x-1\right)-3\left(x+8\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(10x-5-3x-24\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x-29\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\7x-29=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\7x=29\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{29}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{29}{7}\right\}\)

b) Ta có: \(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)(1)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+5\ge5\ne0\forall x\)(2)

Từ (1) và (2) suy ra:

\(\left[{}\begin{matrix}3x-2=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-6\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{\frac{2}{3};-6\right\}\)

c) Ta có: \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(\Leftrightarrow27x^3-8-\left(27x^3-1\right)-x+4=0\)

\(\Leftrightarrow27x^3-8-27x^3+1-x+4=0\)

\(\Leftrightarrow-x-3=0\)

\(\Leftrightarrow-x=3\)

hay x=-3

Vậy: Tập nghiệm S={-3}

d) Ta có: \(x\left(x-1\right)-\left(x-3\right)\left(x+4\right)=5x\)

\(\Leftrightarrow x^2-x-\left(x^2+x-12\right)-5x=0\)

\(\Leftrightarrow x^2-x-x^2-x+12-5x=0\)

\(\Leftrightarrow12-7x=0\)

\(\Leftrightarrow7x=12\)

hay \(x=\frac{12}{7}\)

Vậy: Tập nghiệm \(S=\left\{\frac{12}{7}\right\}\)

e) Ta có: (2x+1)(2x-1)=4x(x-7)-3x

\(\Leftrightarrow4x^2-1-4x^2+28x+3x=0\)

\(\Leftrightarrow31x-1=0\)

\(\Leftrightarrow31x=1\)

hay \(x=\frac{1}{31}\)

Vậy: Tập nghiệm \(S=\left\{\frac{1}{31}\right\}\)

\(1.\)

\(x^2-2x+1-xy-y=\left(x-1\right)^2-y\left(x-1\right)=\left(x-1\right)\left(x-1-y\right)\)

\(2.\)

\(x^3-4x^2+4x-2x+2=x\left(x^2-4x+4\right)-2\left(x-1\right)=x\left(x-2\right)^2-2\left(x-1\right)\)

\(3.\)

\(10x-25-x^2+4y^2=4y^2-\left(x^2-10x+25\right)=4y^2-\left(x-5\right)^2=\left(2y+x-5\right)\left(2y-x+5\right)\)

\(4.\)

\(4x^2-2x+2xy-y=2x\left(2x-1\right)+y\left(2x-1\right)=\left(2x-1\right)\left(2x+y\right)\)

\(5.\)

\(4x\left(x-3\right)^2-3x^2+9x=4x\left(x-3\right)^2-3x\left(x-3\right)=\left(x-3\right)\left(4x^2-12x-3x\right)\)