\(0,01\)              b) \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

a, Căn bậc hai số học của 0,01 là 0,1

b, Căn bậc hai số học của 0,04 là 0,2

c, Căn bậc hai số học của 0,49 là 0,7

d, Căn bậc hai số học của 0,64 là 0,8

e, Căn bậc hai số học của 0,25 là 0,5

f, Căn bậc hai số học của 0,81 là 0,9

g, Căn bậc hai số học của 0,09 là 0,3

h, Căn bậc hai số học của 0,16 là 0,4

30 tháng 5 2017

a) \(\sqrt{0,01}\)

b) \(\sqrt{0,04}\)

c) \(\sqrt{0,49}\)

.......

đúng chứ

a: Vì 2-căn 3>0 nên số này có căn bậc hai số học

b: Vì 4-căn 15>0 nên số này có căn bậc hai số học

c: Vì \(2\sqrt{3}-\sqrt{6}-1>0\)

nên số này có căn bậc hái số học

d: \(3\sqrt{2}-2\sqrt{5}+1>0\)

nên số này có căn bậc hai số học

3 tháng 9 2019

a) \(\sqrt{25}+\sqrt{9}-\sqrt{16}\) = \(\sqrt{5^2}+\sqrt{3^2}-\sqrt{4^2}\) = 5 + 3 - 4 = 4

b) \(\sqrt{0,16}+\sqrt{0,01}+\sqrt{0,25}\) = 0,4 + 0,1 + 0,5 = 1

c) \(\left(\sqrt{3^2}\right)-\left(\sqrt{2^2}\right)+\left(\sqrt{5^2}\right)\)

= 3 - 2 + 5 = 6

d) \(\sqrt{4}-\left(-\sqrt{3}\right)^2+\sqrt{49}\) = 2 - 3 + 7 = 6

e) \(\left(2\sqrt{2}\right)^2-\left(3\sqrt{3}\right)^2\)

= \(\left(\sqrt{8}\right)^2-\left(\sqrt{27}\right)^2\) = 8 - 27 = -19

f) \(\left(-2\sqrt{2}\right)^2+\left(3\sqrt{3}\right)^2\) = 8 + 27 = 35

3 tháng 9 2019

cảm ơn nhé leuleu

1. Áp dụng quy tắc khai phương một thương, hãy tính:a, √3612136121 b, √916:2536916:2536 c, √0,01690,0169d,√15√73515735 e, √818:√318818:318 g, √12,5√0,512,50,52. Tính:a,√2514425144 b,√27812781 c,√2,25162,2516 d, √1,210,491,210,493. Áp dụng quy tắc chia hai căn bậc hai, hãy tính:a, √18:√218:2 b, √45:√8045:80c, (√20−√45+√520−45+5 ) : √55 d, √82√45.238245.234. Khẳng định nào sau đây là...
Đọc tiếp

1. Áp dụng quy tắc khai phương một thương, hãy tính:

a, √3612136121 b, √916:2536916:2536 c, √0,01690,0169

d,√15√73515735 e, √818:√318818:318 g, √12,5√0,512,50,5

2. Tính:

a,√2514425144 b,√27812781 c,√2,25162,2516 d, √1,210,491,210,49

3. Áp dụng quy tắc chia hai căn bậc hai, hãy tính:

a, √18:√218:2 b, √45:√8045:80

c, (√20−√45+√520−45+5 ) : √55 d, √82√45.238245.23

4. Khẳng định nào sau đây là đúng?

A. √3(−5)2=−√353(−5)2=−35 B. (√−3−5)2=35(−3−5)2=35

5. Tính.

a, √2781:√6√1502781:6150 b, (√12+√27−√3):√3(12+27−3):3

c, ⎛⎝√15−√95+√5⎞⎠:√5(15−95+5):5 d, √2+√3√22+32

6. So sánh

a, So sánh √144−49144−49 và √144−√49144−49;

b, Chứng minh rằng , với hai số a,b thỏa mãn a> b> 0 thì √a−√b<√a−b

Giúp em gấp với mai em phải lên lớp nộp bài r ạ

0
6 tháng 4 2019

A

a) Ta có: \(\sqrt{0.1}\cdot\sqrt{4000}\)

\(=\sqrt{\frac{1}{10}}\cdot\sqrt{4000}\)

\(=\sqrt{\frac{1}{10}\cdot4000}=\sqrt{400}=20\)

b) Ta có: \(\sqrt{\frac{9}{196}}=\sqrt{\left(\frac{3}{14}\right)^2}\)

\(=\left|\frac{3}{14}\right|\)

\(=\frac{3}{14}\)(Vì \(\frac{3}{14}>0\))

c) Ta có: \(\sqrt{16}\cdot\sqrt{36}-\sqrt{125}:\sqrt{0.01}\)

\(=\sqrt{16\cdot36}-\frac{\sqrt{125}}{\sqrt{\frac{1}{100}}}\)

\(=\sqrt{576}-\sqrt{125:\frac{1}{100}}\)

\(=24-\sqrt{125\cdot100}\)

\(=24-\sqrt{12500}\)

\(=24-50\sqrt{5}\)

d) Ta có: \(\left(\sqrt{112}-\sqrt{63}+\sqrt{7}\right):\sqrt{7}\)

\(=\left(4\sqrt{7}-3\sqrt{3}+\sqrt{7}\right):\sqrt{7}\)

\(=\frac{2\sqrt{7}}{\sqrt{7}}=2\)

e) Ta có: \(\sqrt{2.5}\cdot\sqrt{30}\cdot\sqrt{48}\)

\(=\sqrt{\frac{5}{2}\cdot30\cdot48}=\sqrt{3600}=60\)

Bài 1: Áp dụng quy tắc khai phương một tích, hãy tính: a, \(\sqrt{3.75}\) ; b, \(\sqrt{0,4.6,4}\) ; c, \(\sqrt{12,1.360}\) d, \(\sqrt{49.1,44.25}\) ; e, \(1,3.52.10\) ; g, \(\sqrt{2,7.5.1,5}\) BÀi 2: Thực hiện các phép tính sau: a, \(\sqrt{\dfrac{1}{9}.0,64.64}\) ; b, \(\sqrt{11\dfrac{1}{9}}\) ; c, \(\sqrt{\dfrac{1}{144}}.2\dfrac{2}{49}\) ...
Đọc tiếp

Bài 1: Áp dụng quy tắc khai phương một tích, hãy tính:

a, \(\sqrt{3.75}\) ; b, \(\sqrt{0,4.6,4}\) ; c, \(\sqrt{12,1.360}\)

d, \(\sqrt{49.1,44.25}\) ; e, \(1,3.52.10\) ; g, \(\sqrt{2,7.5.1,5}\)

BÀi 2: Thực hiện các phép tính sau:

a, \(\sqrt{\dfrac{1}{9}.0,64.64}\) ; b, \(\sqrt{11\dfrac{1}{9}}\) ; c, \(\sqrt{\dfrac{1}{144}}.2\dfrac{2}{49}\) ; d, \(\sqrt{1\dfrac{9}{16}}.2\dfrac{1}{4}.2\dfrac{7}{9}\)

BÀi 3: Áp dụng quy tắc nhân hai căn bậc hai, hãy tính:

a,\(\sqrt{0.4}.\sqrt{64}\) ; b, \(\sqrt{5,2}.\sqrt{1,3}\) ; c, \(\sqrt{12,1}.\sqrt{360}\)

Bài 4: Khẳng định nào sau đây là đúng?

A, số nghịch đảo của \(\sqrt{3}\)\(\dfrac{1}{3}\) .

B, Số nghịch đảo của 2 là \(\dfrac{1}{\sqrt{2}}\)

C, (\(\sqrt{2}+\sqrt{3}\) ) và ( \(\sqrt{2}-\sqrt{3}\) ) không là hai số nghịch đảo của nhau

D, (\(\sqrt{5}-\sqrt{7}\) ) và (\(\sqrt{5}+\sqrt{7}\) ) là hai số nghịch đảo của nhau

bài 5: tính

a, \(\sqrt{a^{ }}\)\(^2\) với a = 6,5; -0,1 ; b, \(\sqrt{a}\) \(^4\) với a = 3; -0,1 ; c, \(\sqrt{a}\) \(^6\) với a= -2;0,1

giúp em với e cần gấp lắm

1

Bài 1: 

a: \(=\sqrt{225}=15\)

b: \(=\sqrt{\dfrac{2}{5}\cdot\dfrac{32}{5}}=\sqrt{\dfrac{64}{25}}=\dfrac{8}{5}\)

c: \(=\sqrt{121\cdot36}=11\cdot6=66\)

d: \(=7\cdot1.2\cdot5=35\cdot1.2=42\)

g: \(=\sqrt{\dfrac{27}{10}\cdot\dfrac{3}{2}\cdot5}=\sqrt{\dfrac{81}{20}\cdot5}=\sqrt{\dfrac{81}{4}}=\dfrac{9}{2}\)

Bài 2: 

a: \(=\dfrac{1}{3}\cdot0.8\cdot8=\dfrac{8}{3}\cdot\dfrac{4}{5}=\dfrac{32}{15}\)

b: \(=\sqrt{\dfrac{100}{9}}=\dfrac{10}{3}\)

c: \(=\sqrt{\dfrac{1}{144}\cdot\dfrac{100}{49}}=\dfrac{1}{12}\cdot\dfrac{10}{7}=\dfrac{5}{6\cdot7}=\dfrac{5}{42}\)

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

Lời giải:

a)

\(f(-3)=(-3)^2=9; f(-\frac{1}{2})=(\frac{-1}{2})^2=\frac{1}{4}\)

\(f(0)=0^2=0\)

\(g(1)=3-1=2; g(2)=3-2=1; g(3)=3-3=0\)

b)

\(2f(a)=g(a)\)

\(\Leftrightarrow 2a^2=3-a\)

\(\Leftrightarrow 2a^2+a-3=0\Leftrightarrow (2a+3)(a-1)=0\)

\(\Rightarrow \left[\begin{matrix} a=\frac{-3}{2}\\ a=1\end{matrix}\right.\)

26 tháng 8 2018

bài 1 đúng\(\sqrt{\dfrac{49}{9}}=\dfrac{7}{3}\)

bài 2 dùng máy tính bỏ túi hoặc

a) giả sử: \(6< \sqrt{37}\)

\(\Leftrightarrow\) 62 < (\(\sqrt{37}\))2

\(\Leftrightarrow\) 36 < 37(luôn đúng)

Vậy 6 < \(\sqrt{37}\)

b), c) tương tự

26 tháng 8 2018

bài 3

a) đúng

b) sai

bài yêu cầu Cm không dúng máy tính thì làm như bài 2