Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\widehat{A}:\widehat{B}=3:5=>\frac{\widehat{A}}{3}=\frac{\widehat{B}}{5}\left(1\right)\)
\(\widehat{B}:\widehat{C}=1:2=>\frac{\widehat{B}}{1}=\frac{\widehat{C}}{2}=>\frac{\widehat{B}}{5}=\frac{\widehat{C}}{10}\left(2\right)\)
Từ (1) và (2) => \(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{5}=\frac{\widehat{C}}{10}\)
Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{5}=\frac{\widehat{C}}{10}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+10}=\frac{180^o}{18}=10^o\)
=> \(\frac{\widehat{A}}{3}=10^o=>\widehat{A}=10^o.3=30^o\)
và \(\frac{\widehat{B}}{5}=10^o=>\widehat{B}=10^o.5=50^o\)
và \(\frac{\widehat{C}}{10}=10^o=>\widehat{C}=10^o.10=100^o\)
Vậy \(\widehat{A}=30^o;\widehat{B}=50^o;\widehat{C}=100^o\)
Ta có : \(\Delta ABC=\Delta ACB=\Delta BCA\)
\(\Rightarrow AB=AC=BC;BC=CB=CA;AC=AB=AB\)
\(\Rightarrow\Delta ABC\)đều \(\Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=60^o\)
2) Gọi a,b,c là độ lớn của 3 góc A,B,C
Theo đề bài ta có:
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{180}{6}=30\)
\(\Rightarrow\hept{\begin{cases}a=30\\b=60\\c=90\end{cases}}\)
Vậy 3 góc A,B,C lần lượt là 30,60 và 90 độ
1) Áp dụng t/c dãy tỉ số bằng nhau:
\(a=\frac{b}{3}=\frac{c}{4}=\frac{3a-2b+2c}{3-6+8}=\frac{55}{5}=11\)
\(\Rightarrow\hept{\begin{cases}a=11\\b=33\\c=44\end{cases}}\)
1/ Ta có: tam giác ABC = tam giác DEF
=> góc A = góc D
góc B = góc E
góc C = góc F
Ta có: góc A + góc B + góc C = 1800
1300 + góc C = 1800
góc C = 1800-1300 = 500
Ta có: góc A + góc B = 1300
góc A + 550 = 1300
góc A = 1300 - 550 =750
Vậy góc A = góc D = 750
góc B = góc E = 550
góc C = góc F = 500
2/ Ta có: tam giác DEF = tam giác MNP
=> DE = MN
EF = NP
FD = PM
Ta có: EF + FD = 10 cm
Mà NP - MP = EF - FD = 2 cm
EF = (10 + 2) : 2 = 6 (cm)
FD = (10 - 2) : 2 = 4 (cm)
Vậy DE = MN = 3 cm
EF = NP = 6 cm
FD = MP = 4 cm
1) Ta có: ( \(\widehat{A}\) + \(\widehat{B}\)) + \(\widehat{C}\) = 180o
hay 130o + \(\widehat{C}\) = 180o
\(\Rightarrow\) \(\widehat{C}\) = 180o - 130o = 50o
Vì ΔABC = ΔDEF nên ta có:
\(\widehat{C}\) = \(\widehat{F}\) = 50o
\(\widehat{E}\) = \(\widehat{B}\) = 55o
Ta có: \(\widehat{A}\) + \(\widehat{B}\) = 130o hay \(\widehat{A}\) + 55o = 130o
\(\Rightarrow\) \(\widehat{A}\) = 130o - 55o = 75o
\(\Leftrightarrow\) \(\widehat{A}\) = \(\widehat{D}\) = 75o
Vậy: \(\widehat{A}\) = \(\widehat{D}\) = 75o
\(\widehat{B}\) = \(\widehat{E}\) = 55o
\(\widehat{C}\) = \(\widehat{F}\) = 50o
2) ΔDEF = ΔMNP nên:
\(\Rightarrow\) DE = MN
EF = NP
FD = PM
Ta có: EF + FD = 10cm
mà ΔDEF = ΔMNP
\(\Rightarrow\) NP - MP = EF - FD = 2cm
\(\Rightarrow\) EF = \(\frac{10+2}{2}\) = 6cm
FD = 6cm - 2cm = 4cm
Vậy: DE= MN = 3cm
EF = NP = 6cm
FD = PM = 4cm