Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tứ giác ABCD có AB //CD
=> ABCD là hình thang
=> A+D = 180 độ
Mà A = 40 + D
=> 40 + D + D = 180 độ
=> 2D + 40 = 180 độ
=> 2D = 140 độ
=> D = 70 độ
=> A = 180 - 70 = 110 độ
Mà B + C = 180 độ
Mà B = 2C
=> 2C + C = 180 độ
=> 3C = 180 độ
=> C = 60 độ
=> B = 180 - 60 = 120 độ
A B C D
a)
Ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\Leftrightarrow\frac{C+D}{2}+C+D=360^o\)
\(\Leftrightarrow\frac{3\left(C+D\right)}{2}=360^o\)
\(\Leftrightarrow3\left(C+D\right)=720^o\)
\(\Leftrightarrow C+D=240^o\)
\(\Leftrightarrow A+B=120\)
Vì AB // CD nên \(\hept{\begin{cases}\widehat{A}+\widehat{D}=180^0\\\widehat{B}+\widehat{C}=180^0\end{cases}}\)(định lí hình thang)
Mà \(\widehat{A}=5\widehat{D}\)=> \(\widehat{5D}+\widehat{D}=180^0\)=> \(6\widehat{D}=180^0\)=> \(\widehat{D}=30^0\)(1)
Thay (1) vào \(\widehat{A}=5\widehat{D}\)ta có :
\(\widehat{A}=5\cdot30^0=150^0\)
Lại có : \(\widehat{B}=4\widehat{C}\)
=> \(4\widehat{C}+\widehat{C}=180^0\)
=> \(5\widehat{C}=180^0\)
=> \(\widehat{C}=36^0\)(2)
Thay (2) vào \(\widehat{B}=4\widehat{C}\)ta có :
=> \(\widehat{B}=4\cdot36^0=144^0\)
Vậy : ^A = 1500 , ^B = 1440 , ^C = 360 , ^D = 300
Ta có hình vẽ: A B C D
Vì AB//CD
nên góc A+ góc D = 180 độ (1)
góc A - góc D = 20 độ
=> góc A = 20 độ + góc D (2)
thay (1) vào (2) ta được: 20 độ + góc D + góc D = 180 độ
20 độ + 2 lần góc D = 180 độ
2 lần góc D = 180- 20 = 160 độ
góc D = 160/2 = 80 độ
=> góc A = góc D + 20 độ = 80+ 20= 100 độ
mà góc B = 2 lần góc C
góc B + góc C = 180 độ (trong cùng phía)
hay 2 lần góc C + góc C = 180 độ
3 lần góc C = 180 độ
góc C = 180/ 3= 60 độ
=> góc B = góc C . 2 = 60. 2= 120 độ
Vậy góc A= 100 độ
góc B = 120 độ
góc C = 60 độ
góc D = 80 độ
1) \(\widehat{A}+\widehat{D}=180^O\)
=> \(\widehat{A}=180^O-60^O=120^O\)
2) \(\frac{\widehat{B}}{\widehat{D}}=\frac{4}{5}\)=> \(\widehat{B}=60.\frac{4}{5}=48^O\)
Ta có: \(\widehat{B}+\widehat{C}=180^o\)
=> \(\widehat{C}=180^o-48^{^{ }o}=132^o\)
Hình tự vẽ nhé
a,
Gọi H là chân đường cao hạ từ C, ABCH là hình vuông
\(\Rightarrow CH=BC=\frac{AD}{2}\)
Tam giác CDH có:
\(\widehat{CHD=90^o;CH=HD}\)
\(\Rightarrow CHD\)là tam giác vuông cân tại H
\(\Rightarrow\widehat{CDH}=\widehat{HCD}=45^o\)
\(\Rightarrow\widehat{BCD}=90^o+45^o=135^o\)
b, Có CH = AH
\(\Rightarrow\)Tam giác AHC vuông cân tại H. Do đó \(\widehat{ACH}=45^o\)
Mà \(\widehat{HCD}=45^o\)
\(\Rightarrow\widehat{ACD}=45^o+45^o=90^o\)
Vậy \(AC\perp CD\)( đpcm )
Bài này quá dễ
a, Hình thang ABCD có góc A = góc B nên ABCD là hình thang cân
Suy ra: góc C = góc D (DHNB)
b, ABCD là hình thang cân(cmt) nên AD=BC (t/c hình thang cân)
AB//CD
=>\(\widehat{B}+\widehat{C}=180^0\)
=>\(\widehat{C}+\widehat{C}+40^0=180^0\)
=>\(2\cdot\widehat{C}=180^0-40^0=140^0\)
=>\(\widehat{C}=70^0\)
\(\widehat{B}=70^0+40^0=110^0\)
ABCD là hình thang có AB//CD
=>\(\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía)
=>\(2\cdot\widehat{D}+\widehat{D}=180^0\)
=>\(3\widehat{D}=180^0\)
=>\(\widehat{D}=60^0\)
\(\widehat{A}=2\cdot60^0=120^0\)