K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

2.

\(x^2-2x-11-y^2\)

\(\Leftrightarrow\left(x-2\right)x-y^2-11\)

\(\Leftrightarrow\left(x-1\right)^2-y^2-12\)

\(\Leftrightarrow y=-\sqrt{x^2-2x-11}\)

\(\Leftrightarrow y=\sqrt{x^2-2x-11}\)

\(x=4\left(y^2+12\right)\)

\(\Rightarrow x=-3;y=⊥2\)

\(x=5;y=⊥2\)\(\)

10 tháng 4 2019

Khó quá

10 tháng 4 2019

thế mới hỏi

21 tháng 11 2015


Với [x>1x<−1] ta có: x3<x3+2x2+3x+2<(x+1)3⇒x3<y3<(x+1)3 (không xảy ra)
Từ đây suy ra −1≤x≤1
Mà x∈Z⇒x∈{−1;0;1}
∙ Với x=−1⇒y=0
∙ Với x=0⇒y=2√3 (không thỏa mãn)
∙ Với x=1⇒y=2
Vậy phương trình có 2 nghiệm nguyên (x;y) là (−1;0) và (1;2) 

  • Oral1020, DarkBlood, trandaiduongbg và 1 người khác yêu thích
7 tháng 1 2019

x=-1,y=0

27 tháng 12 2016

Lần sau bạn nhớ gửi đường dẫn câu hỏi nhé:

vào tìm câu hỏi qua Thông kế--> câu hỏi khác--> mỏi và ngại lắm.

\(x+y+z=1\left(1\right)\)

\(\frac{x}{z+z}+\frac{y}{\left(z+x\right)}+\frac{z}{\left(x+y\right)}=1\left(2\right)\)

Lấy (1) nhân (2)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{x}{z+y}+\frac{y}{\left(z+x\right)}+\frac{z}{\left(x+y\right)}\right)=1\)

\(\Leftrightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)+\left(x+y\right)\frac{z}{\left(x+y\right)}+\left(y+z\right).\frac{x}{\left(z+y\right)}+\left(x+z\right).\frac{y}{\left(z+x\right)}=1\)

\(\Leftrightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)+\left(x+y+z\right)=1\)

\(\Leftrightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)+1=1\)

\(\Rightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)=0\)

Chưa thạo bước 2 nhân phân phối bt hết ra rồi ghép lại 

(mình hay lang thang xem lời giải => thấy cách nhân ghép luôn đỡ mỏi)

27 tháng 12 2016

Hay ! mình thì nhân hết ra mệt thật

15 tháng 8 2021

Áp dụng BĐT Cauchy schwarz dạng Engel 

\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{1+1+1}=\frac{1}{3}\)

Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{3}\)