Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
A B C H
Áp dụng định lí Py - ta - go :
\(BC^2=AB^2+AC^2\Leftrightarrow BC^2=3^2+4^2=9+16=25\)
\(\Rightarrow BC=\sqrt{25}=5\)
Ta có : \(AB.AC=BC.AH\)
\(\Rightarrow3.4=5.AH\Rightarrow H=\frac{12}{5}\)
\(\hept{\begin{cases}AB^2=BC.BH\Rightarrow BH=\frac{AB^2}{BC}=\frac{3^2}{5}=\frac{9}{5}\\AC^2=BC.CH\Rightarrow CH=\frac{AC^2}{BC}=\frac{4^2}{5}=\frac{16}{5}\end{cases}}\)
Vậy \(\hept{\begin{cases}BC=5\\BH=\frac{9}{15}\\CH=\frac{16}{5}\end{cases}}\)
Xét hai tam giác vuông DAC và DBA ,ta có:
∠ (ADC) = ∠ (BDA) = 90 0
∠ C = ∠ (DAB) (hai góc cùng phụ ∠ B )
Suy ra: △ DAC đồng dạng △ DBA (g.g)
Suy ra:
⇒ D A 2 = D B . D C
hay DA = D B . D C = 9 . 16 = 12 (cm)
Áp dụng định lí Pi-ta-go vào tam giác vuông ABD, ta có:
A B 2 = D A 2 + D B 2 = 9 2 + 12 2 = 225 ⇒ AB =15 (cm)
Áp dụng định lí Pi-ta-go vào tam giác vuông ACD,ta có:
AC2 = DA2 + DC2 = 122 +162 = 400 ⇒ AC = 20cm
Vậy BC = BD + DC = 9 + 16 = 25(cm)
Gọi độ dài ba cạnh của tam giác là a, b, c (cm) ( Điều kiện : a,b,c>0)
Ta có: \(S=\frac{1}{2}.12a=\frac{1}{2}.15b=\frac{1}{2}.20c\)
\(\Leftrightarrow12a=15b=20b\)
\(\Leftrightarrow\frac{a}{\frac{1}{12}}=\frac{b}{\frac{1}{15}}=\frac{c}{\frac{1}{20}}\)
ÁP DỤNG TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{a}{\frac{1}{12}}=\frac{b}{\frac{1}{15}}=\frac{c}{\frac{1}{20}}=\frac{a+b+c}{\frac{1}{12}+\frac{1}{15}+\frac{1}{20}}=\frac{60}{\frac{1}{5}}=60.5=300\)
\(\Leftrightarrow\hept{\begin{cases}\frac{a}{\frac{1}{12}}=300\\\frac{b}{\frac{1}{15}}=300\\\frac{c}{\frac{1}{20}}=300\end{cases}\Leftrightarrow\hept{\begin{cases}a=300.\frac{1}{12}\\b=300.\frac{1}{15}\\c=300.\frac{1}{20}\end{cases}\Leftrightarrow}\hept{\begin{cases}a=25\left(cm\right)\\b=20\left(cm\right)\\c=15\left(cm\right)\end{cases}}}\)
Vậy độ dài ba cạnh của tam giác là 25cm, 20cm, 15cm
Gọi 3 cạnh của tam giác có độ dài là x, y, z
=> x+y+z=60x+y+z=60
Như ta đã học, diện tích tam giác =1/2.h.a
Trong đó a là một cạnh của tam giác; h là chiều cao hạ từ một đỉnh lên cạnh a
Áp dụng vào bài này ta có: 1/2.12.x=1/2.15.y=1/2.20.z
Vì bài này 3 cạnh có thể coi như nhau, nên có thể hoán đổi vị trí của chúng
Rút ra thay vào, ta được tam giác thỏa mãn yêu cầu bài toán có 3 cạnh là 36cm;2,4cm;21,6cm
4:
a: Gọi độ dài cạnh góc vuông cần tìm là x
Theo đề, ta có: x^2+x^2=a^2
=>2x^2=a^2
=>x^2=a^2/2=2a^2/4
=>\(x=\dfrac{a\sqrt{2}}{2}\)
b:
Độ dài cạnh là;
\(h:\dfrac{\sqrt{3}}{2}=\dfrac{2h}{\sqrt{3}}\)
5:
ΔAHB vuông tại H
=>AH^2+HB^2=AB^2
=>13^2=12^2+HB^2
=>HB=5cm
BC=5+16=21cm
ΔAHC vuông tại H
=>AH^2+HC^2=AC^2
=>AC^2=16^2+12^2=400
=>AC=20(cm)
Cảm ơn em câu hỏi của em thật là thù vị. Về thắc mắc của em cô nghĩ chắc cũng có nhiều bạn đang muốn biết lắm ý nhỉ? Về vấn đề em hỏi cô xin trả lời như sau:
Tình theo a ở đây không phải là a mà mình tùy chọn em nhá. a ở đây là một ẩn a, em cứ tính độ dài của tam giác đó theo ẩn a thôi em ạ!
Vì ABC là tam giác đều nên đường cao cũng là đường trung tuyến của tam giác. Gọi AH là đường cao của tam giác thì
BH = HC = \(\dfrac{1}{2}\)a
Xét tam giác ACH vuông tại H. Theo pytago ta có:
AC2 = AH2 + HC2
⇒ AH2 = AC2 - HC2
⇒AH2 = a2 - (\(\dfrac{1}{2}\)a)2 = \(\dfrac{3}{4}\)a2
⇒ AH = \(\sqrt{\dfrac{3}{4}a^2}\) = \(\dfrac{3\sqrt{a}}{2}\)
a) Vì \(\Delta ABC\) cân tại A, có AH là đường cao
\(\Rightarrow AH\) vừa là đường cao, vừa là đường phân giác của \(\Delta ABC\)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}=\dfrac{\widehat{A}}{2}\)
Xét \(\Delta ABH\) và \(\Delta ACH\) có:
\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)
\(\widehat{AHB}=\widehat{AHC}=90^0\)
\(AH\): cạnh chung
\(\Rightarrow\Delta ABH=\Delta ACH\left(ch-gn\right)\)
Bạn học casio à, mình nhớ là bỏ thi rồi mà, chứ toán 8 nâng cao làm gì có mấy cái này, nếu mà muốn làm bài của bạn thì phải dùng các hàm số lượng giác, mà đó là toán 9 rồi :)