\(\sqrt{7+3\sqrt{5}}\)

b.\(\sqr...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2016

a)Có: \(\sqrt{2}\cdot\sqrt{7+3\sqrt{5}}\)

       \(=\sqrt{14+6\sqrt{5}}=\sqrt{9+2\cdot3\cdot\sqrt{5}+5}=\sqrt{\left(3+\sqrt{5}^2\right)}=3+\sqrt{5}\)

=> \(\sqrt{7+3\sqrt{5}}=\frac{3+\sqrt{5}}{\sqrt{2}}\)

b)\(\sqrt{118+28\sqrt{10}}\)

\(=\sqrt{2\left(59+14\sqrt{10}\right)}\)

\(=\sqrt{2\left(49+2\cdot7\cdot\sqrt{10}+10\right)}\)

\(=\sqrt{2\left(7+\sqrt{10}\right)^2}\)

\(=\sqrt{2}\left(7+\sqrt{10}\right)\)

29 tháng 7 2016

a) \(\sqrt{7+3\sqrt{5}}=\sqrt{\left(\sqrt{\frac{5}{2}}+\sqrt{\frac{9}{2}}\right)^2}=\left|\sqrt{\frac{5}{2}}+\sqrt{\frac{9}{2}}\right|=\sqrt{\frac{5}{2}}+\sqrt{\frac{9}{2}}\)

b) \(\sqrt{238-30\sqrt{13}}=\sqrt{\left(\sqrt{225}-\sqrt{13}\right)^2}=\left|25-\sqrt{13}\right|=25-\sqrt{13}\)

c) \(\sqrt{118+28\sqrt{10}}=\sqrt{\left(\sqrt{20}+\sqrt{98}\right)^2}=\left|2\sqrt{5}+7\sqrt{2}\right|=2\sqrt{5}+7\sqrt{2}\)

(Nhớ k cho mình với nhá!)

27 tháng 7 2020

a, \(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)-\sqrt{2}\left(\sqrt{3}-1\right)\)

\(=3-1-\sqrt{6}+\sqrt{2}=2+\sqrt{2}-\sqrt{6}\)

b, \(=\sqrt{300.0,04}+2\left|\sqrt{3}-\sqrt{5}\right|\)

\(=2\sqrt{3}+2\left(\sqrt{5}-\sqrt{3}\right)\)

\(=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}\)

c, \(=\sqrt{196}-2\sqrt{98}+\sqrt{49}+7\sqrt{8}\)

\(=14-14\sqrt{2}+7+14\sqrt{2}=21\)

d, \(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)

\(=15\sqrt{5}+10\sqrt{5}-9\sqrt{5}=16\sqrt{5}\)

Bài 1: Rút gọn

a) Ta có: \(\left(\sqrt{3}-\sqrt{2}+1\right)\cdot\left(\sqrt{3}-1\right)\)

\(=\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-1\right)-\sqrt{2}\cdot\left(\sqrt{3}-1\right)\)

\(=3-1-\sqrt{6}+\sqrt{2}\)

\(=2-\sqrt{2}-\sqrt{6}\)

b) Ta có: \(0.2\cdot\sqrt{\left(-10\right)^2\cdot3}+2\cdot\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}\)

\(=0.2\cdot\sqrt{\left(-10\right)^2}\cdot\sqrt{3}+2\cdot\left(\sqrt{5}-\sqrt{3}\right)\)

\(=0.2\cdot10\cdot\sqrt{3}+2\sqrt{5}-2\sqrt{3}\)

\(=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}\)

\(=2\sqrt{5}\)

c) Ta có: \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)

\(=\sqrt{196}-2\cdot\sqrt{98}+\sqrt{49}+7\sqrt{8}\)

\(=14-\sqrt{392}+7+\sqrt{392}\)

=21

d) Ta có: \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)

\(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)

\(=\sqrt{5}\left(15+5\cdot2-3\cdot3\right)\)

\(=16\sqrt{5}\)

23 tháng 6 2017

\(\sqrt{5+2\sqrt{6}}-\sqrt{2}=\sqrt{3+2\sqrt{6}+2}-\sqrt{2}=\sqrt{3}+\sqrt{2}-\sqrt{2}=\sqrt{3}\)

các câu còn lại tách tương tự, có thắc mắc gì ko?

23 tháng 6 2017

giúp vs

\(a,\sqrt{3-\sqrt{5}}=\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}=\frac{\sqrt{5}-1}{\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)

\(b,\sqrt{4+\sqrt{7}}=\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{7}+1}{\sqrt{2}}=\frac{\sqrt{14}+\sqrt{2}}{2}\)

\(c,\sqrt{5+\sqrt{21}}=\frac{\sqrt{30+6\sqrt{21}}}{\sqrt{6}}=\frac{\sqrt{21}+3}{\sqrt{6}}\)

6 tháng 8 2019

a, A= \(\frac{\sqrt{48-12\sqrt{7}}}{2}-\frac{\sqrt{48+12\sqrt{7}}}{2}\)

       = \(\frac{\sqrt{\left(\sqrt{42}-\sqrt{6}\right)^2}}{2}-\frac{\sqrt{\left(\sqrt{42}+\sqrt{6}\right)^2}}{2}\)

       = \(\frac{-2\sqrt{6}}{2}\)

       = \(-\sqrt{6}\)

NV
30 tháng 6 2019

\(\sqrt{25-2.5.\sqrt{3}+3}=\sqrt{\left(5-\sqrt{3}\right)^2}=5-\sqrt{3}\)

\(\sqrt{121+2.11.\sqrt{2}+2}=\sqrt{\left(11+\sqrt{2}\right)^2}=11+\sqrt{2}\)

\(\sqrt{\frac{9}{2}-2.\frac{3}{\sqrt{2}}.\frac{\sqrt{5}}{\sqrt{2}}+\frac{5}{2}}=\sqrt{\left(\frac{3}{\sqrt{2}}-\frac{\sqrt{5}}{\sqrt{2}}\right)^2}=\frac{3}{\sqrt{2}}-\frac{\sqrt{5}}{\sqrt{2}}=\frac{3\sqrt{2}-\sqrt{10}}{2}\)

12 tháng 7 2016

a) ĐKXĐ : \(0\le a\ne1\)

\(\frac{\sqrt{a}-a}{\sqrt{a}-1}=\frac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}=-\sqrt{a}\)

b) ĐKXĐ : \(b\ne0,a\ne-\sqrt{b}\)

\(\frac{a-\sqrt{b}}{\sqrt{b}}:\frac{\sqrt{b}}{a+\sqrt{b}}=\frac{a-\sqrt{b}}{\sqrt{b}}.\frac{a+\sqrt{b}}{\sqrt{b}}=\frac{a^2-b}{b}=\frac{a^2}{b}-1\)

c) \(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=\sqrt{5}\left(2-5-4+11\right)\)\(=4\sqrt{5}\)

d) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}=\left(2\sqrt{7}-2\sqrt{2}.\sqrt{7}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)

\(=7\left(2-2\sqrt{2}+1\right)+14\sqrt{2}=7\left(2-2\sqrt{2}+1+2\sqrt{2}\right)=7.3=21\)

e) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)

12 tháng 7 2016

b) ĐKXĐ : \(b>0,a\ne\sqrt{b}\)

2 tháng 7 2019

\(a,\frac{2\sqrt{10}-5}{4-\sqrt{10}}=\frac{\left(2\sqrt{10}-5\right)\left(4+\sqrt{10}\right)}{\left(4-\sqrt{10}\right)\left(4+\sqrt{10}\right)}=\frac{20+6\sqrt{10}-5\sqrt{10}-9}{16-10}.\)

\(=\frac{11-\sqrt{10}}{6}\)

\(b,=\frac{\left(9-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{\left(3\sqrt{6}-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}=\frac{\left(9-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{54-8}\)

\(=\frac{\left(9-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{46}\)