Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x\right|=7\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
Vậy \(x\in\left\{\pm7\right\}\)
Bài 3:
a, Đặt \(A=\left|2x-\frac{1}{5}\right|+2017\)
Để A đạt GTNN thì \(\left|2x-\frac{1}{5}\right|\)đạt GTNN
Mà \(\left|2x-\frac{1}{5}\right|\ge0\)
Do đó \(\left|2x-\frac{1}{5}\right|=0\)thì A đạt GTNN tức là A = 0 + 2017 = 2017 khi
\(2x-\frac{1}{5}=0=>2x=0+\frac{1}{5}=\frac{1}{5}=>x=\frac{1}{5}.\frac{1}{2}=\frac{1}{10}\)
b, Đặt \(B=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)
Ta thấy \(\frac{1}{2}>\frac{1}{3}>\frac{1}{4}=>x+\frac{1}{2}>x+\frac{1}{3}>x+\frac{1}{4}\)
Do đó để B đạt GTNN thì \(x+\frac{1}{2}\)đạt GTNN
mà \(x+\frac{1}{2}\ge0\)
Từ 2 điều trên => \(x+\frac{1}{2}=0=>x=-\frac{1}{2}\)
Khi đó \(x+\frac{1}{3}=-\frac{1}{2}+\frac{1}{3}=-\frac{1}{6}\)
và \(x+\frac{1}{4}=-\frac{1}{2}+\frac{1}{4}=-\frac{1}{4}\)
Vậy GTNN của \(B=\left|0\right|+\left|-\frac{1}{6}\right|+\left|-\frac{1}{4}\right|=0+\frac{1}{6}+\frac{1}{4}=\frac{10}{24}\)khi x = -1/2
Phần b này thì mình không chắc lắm bạn tự xem lại nhé
Bài 1:
\(M=\frac{2017}{11-x}\)đạt GTLN <=> 11 - x đạt GTNN và 11 - x > 0 (nếu không thì M đạt giá trị âm (vô lí))
=> 11 - x = 1
=> x = 10
Vậy x = 10 thì M đạt GTLN tức là bằng \(\frac{2017}{1}=2017\)
a)\(\frac{x+3}{x+5}=7\Leftrightarrow x+3=7\left(x+5\right)\)
\(\Leftrightarrow x+3=7x+35\)
\(\Leftrightarrow-6x=32\)
\(\Leftrightarrow x=-\frac{16}{3}\)
b)\(\frac{2x-1}{3x+5}=-\frac{2}{3}\)
\(\Leftrightarrow3\left(2x-1\right)=-2\left(3x+5\right)\)
\(\Leftrightarrow6x-3=-6x-10\)
\(\Leftrightarrow12x=-7\)
\(\Leftrightarrow x=-\frac{7}{12}\)
c)\(\frac{x+1}{4}=\frac{9}{x+1}\Leftrightarrow\left(x+1\right)^2=36\)
\(\Leftrightarrow\left(x+1\right)^2=6^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=6\\x+1=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-7\end{cases}}}\)
d)\(\frac{6x-1}{2x+3}=\frac{3x}{x+2}\)
\(\Leftrightarrow\left(6x-1\right)\left(x+2\right)=3x\left(2x+3\right)\)
\(\Leftrightarrow6x^2+12x-x-2=6x^2+9x\)
\(\Leftrightarrow2x=2\Leftrightarrow x=1\)
Bài 1:
\(4.\left(\frac{-1}{2}\right)^2-2.\left(\frac{-1}{2}\right)^2+3.\left(\frac{-1}{2}\right)+1\)
\(=4.\frac{1}{4}-2.\frac{1}{4}+3.\left(\frac{-1}{2}\right)+1\)
\(=1-\frac{1}{2}-\frac{3}{2}+1\)
\(=0\)
Bài 2:
a) \(\frac{37-x}{x+13}=\frac{3}{7}\)
\(\Rightarrow7\left(37-x\right)=3\left(x+13\right)\)
\(\Rightarrow259-7x=3x+39\)
\(\Rightarrow259-39=3x+7x\)
\(\Rightarrow220=10x\)
\(\Rightarrow x=22\)
d) \(\frac{3^2.3^8}{27^3}=3^x\)
\(\Rightarrow\frac{3^{10}}{\left(3^3\right)^3}=3^x\)
\(\frac{\Rightarrow3^{10}}{3^9}=3^x\)
\(\Rightarrow3=3^x\)
\(\Rightarrow x=1\)
Hok tốt nha^^
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
1.a) \(\left(31\frac{6}{13}+5\frac{9}{41}\right)-36\frac{6}{13}=\left(31+\frac{6}{13}+5+\frac{9}{41}\right)-\left(36+\frac{6}{13}\right)\)
\(=\left(36+\frac{6}{13}-\frac{9}{41}\right)-\left(36+\frac{6}{13}\right)=\left(36+\frac{6}{13}\right)-\left(36+\frac{6}{13}\right)-\frac{9}{41}=-\frac{9}{41}\)
b) \(\frac{5}{3}+\left(-\frac{2}{7}\right)-\left(-1,2\right)-\left|1.4-0,2\right|\)
\(=\frac{5}{3}-\frac{2}{7}+1,2-1,2=\frac{29}{21}\)
c) \(0,25+\frac{3}{5}-\left(\frac{1}{8}-\frac{2}{5}+1\frac{1}{4}\right)+\left|\frac{3}{5}\right|\)
\(=\frac{1}{4}+\frac{3}{5}-\frac{1}{8}+\frac{2}{5}-1-\frac{1}{4}+\frac{3}{5}\)
\(=\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{3}{5}+\frac{2}{5}-1\right)+\frac{3}{5}-\frac{1}{8}=\frac{19}{40}\)
2) \(-\frac{3}{5}-x=0,75\)
=> \(-\frac{3}{5}-x=\frac{3}{4}\)
=> \(x=-\frac{3}{5}-\frac{3}{4}=\frac{-27}{20}\)
b) \(x+\frac{1}{3}=\frac{2}{5}-\left(-\frac{1}{3}\right)\)
=> \(x+\frac{1}{3}=\frac{2}{5}+\frac{1}{3}\)
=> \(x=\frac{2}{5}\)
c) |2x - 4| + 1 = 5
=> |2x - 4| = 4
<=> \(\orbr{\begin{cases}2x-4=4\\2x-4=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)
Giúp mình với nha cả nhả :<
Cả nhà làm vài ý thui cx được ạ :<