K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

Ta có \(B=\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{2}{2010}+1\right)+\left(\frac{1}{2011}+1\right)+1\)

\(B=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2010}+\frac{2012}{2011}+\frac{2012}{2012}\)

\(B=2012.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)\)

B=2012.A

=>A/B=1/2012

8 tháng 4 2017

a/b= 1/2012 nha bạn 

tích

4 tháng 4 2017

Cậu ơi hình như đề bài đúng là:

P =\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2011}}{2011+\dfrac{2012}{2}+\dfrac{2009}{3}+...+\dfrac{1}{2011}}\)

4 tháng 3 2018

nâng cao phát triển toán 7 đấy 

mấy bài đấu thì phải

4 tháng 3 2018

Đặt: \(L=\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}\)

\(L=1+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)\)

\(L=\frac{2012}{2012}+\frac{2012}{2}+\frac{2012}{3}+..+\frac{2012}{2011}\)

\(L=2012\left(\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2011}+\frac{1}{2012}\right)\)

Hay: \(P=\frac{1}{2012}\)

9 tháng 8 2017

Ta có :

\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}}{1+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+....+\left(\frac{1}{2011}+1\right)}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}}{\frac{2012}{2}+\frac{2012}{3}+....+\frac{2012}{2011}+\frac{2012}{2012}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}\right)}\)

\(\frac{1}{2012}\)

19 tháng 6 2019

\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\left(\frac{2011}{1}+1\right)+\left(\frac{2010}{2}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2012}{1}+\frac{2012}{2}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}\)

\(=\frac{1}{2012}\)

19 tháng 6 2019

\(B=\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+....+\frac{1}{2011}\)

\(=\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+....\left(\frac{1}{2011}+1\right)+1\)

\(=\frac{2012}{2}+\frac{2012}{3}+\frac{2012}{4}+.....+\frac{2012}{2011}+\frac{2012}{2012}\)

\(=2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2012}\right)\)

Thay vào,rút gọn là ra