\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)

NHANH LÊN NHÉ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

x = 9/11

4 tháng 5 2017

(x=9/11)có đúng không????

24 tháng 3 2017

cách làm như sau

\(C=\frac{2}{2}.\left[\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{98.99}-\frac{1}{99.100}\right]\)

\(C=1\left[\frac{1}{2}-\frac{1}{9900}\right]\)

\(C=\frac{4949}{9900}\)

24 tháng 3 2017

cần làm ra ko

26 tháng 3 2017

Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(A=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

chỗ nãy rồi bạn tự tính tiếp

KQ la \(\frac{4949}{19800}\)ak cac ban

30 tháng 7 2016

1)

\(=\frac{1}{3}+\frac{12}{67}+\frac{13}{41}-\frac{79}{67}+\frac{28}{41}\)

\(=\frac{1}{3}+\left(\frac{12}{67}-\frac{79}{67}\right)+\left(\frac{13}{41}+\frac{28}{41}\right)=\frac{1}{3}+\left(-1\right)+1=\frac{1}{3}\)

30 tháng 7 2016

Sửa đề chút nha

\(\frac{x}{2}=\frac{1}{1.2.3}+....+\frac{1}{98.99.100}\)

Ta có công thức tổng quát  \(\frac{1}{a\left(a+1\right)\left(a+2\right)}=\frac{1}{2}\left(\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\right)\)

\(\Rightarrow\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)

Áp dụng vào tổng ta có

\(\frac{x}{2}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{98.99}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{99.100}=\frac{4949}{9900}\)

\(\Rightarrow x=\frac{4949}{4950}\)

3 tháng 3 2019

\(B=-\frac{3}{5}\left(\frac{3}{8}-2+\frac{5}{8}\right)\)

\(B=-\frac{3}{5}.\left(-1\right)=\frac{3}{5}\)

\(C=\frac{8}{5}.\frac{3}{4}-\left(\frac{11}{20}-\frac{1}{4}\right).\frac{7}{3}\)

\(C=\frac{6}{5}-\frac{3}{10}.\frac{7}{3}\)

\(C=\frac{6}{5}-\frac{7}{10}=\frac{1}{2}\)

23 tháng 4 2018

\(A=2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\right)\)

\(A=2.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(A=2.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(A=2\cdot\frac{4949}{9900}=\frac{4949}{4950}\)

8 tháng 7 2016

                            Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

                                  \(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)

                                \(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

                               \(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

                            \(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

                           \(A=\frac{1}{2}.\left(\frac{4950-1}{9900}\right)=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{19800}\)

                         Ủng hộ mk nha!!

9 tháng 8 2016

a) \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)

\(A=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\left(\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(A=\frac{1}{1.2}-\frac{1}{99.100}\)

\(A=\frac{1}{2}-\frac{1}{9900}\)

\(A=\frac{9898}{19800}.\)

Vậy :

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(A=\frac{9898}{19800}:2\)

\(A=\frac{4949}{19800}.\)

 

9 tháng 8 2016

a) A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

A = \(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)

A = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

A = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

A = \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

A = \(\frac{1}{2}.\frac{4949}{9900}\)

A = \(\frac{4949}{19800}\)