Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐK:\(a,b\ge0;b\ne1\)
\(=\sqrt{\frac{a-1}{b-1}}\)
Thay a=7,25;b=3,25:
\(=\sqrt{\frac{6,25}{2,25}}=\frac{5}{3}\)
b. ĐK:\(x\ge-2\)
\(=4x-2\sqrt{2}+\sqrt{x^2\sqrt{x+2}}\)
\(=4x-2\sqrt{2}+x\sqrt[4]{x+2}\)
Thay x=-\(\sqrt{2}\) vào rồi tính.
a, ĐKXĐ : \(\left[{}\begin{matrix}x\ge0\\ y>0\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x>0\\y\ge0\end{matrix}\right.\)
Ta có :\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
= \(\frac{\sqrt{x^2}\sqrt{x}+\sqrt{y^2}\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\frac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
= \(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)
= \(\left(x-\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\)
= \(x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)
= \(\sqrt{xy}\)
\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}:\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}\) \(=\sqrt{\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{b}+1\right)\left(\sqrt{b}-1\right)}}\)\(=\sqrt{\frac{a^2-1}{b^2-1}}\) (*)
Thay a=7,25 và b= 3,25 vào (*) ta có:
\(\sqrt{\frac{7,25^2-1}{3,25^2-1}}\) \(=\frac{5\sqrt{33}}{4}:\frac{3\sqrt{17}}{4}=\frac{5\sqrt{33}}{3\sqrt{17}}=\frac{5\sqrt{561}}{51}\)
\(M=\left(\frac{\sqrt{t^2-a^2}+\sqrt{t^2+a^2}}{\sqrt{t^2-a^2}-\sqrt{t^2+a^2}}\right)^4\)
DO \(t=a\sqrt{\frac{x^2+1}{2x}}\)
=> \(t^2=a^2.\frac{x^2+1}{2x}\)
=> \(\sqrt{t^2-a^2=}\sqrt{a^2.\frac{x^2+1}{2x}-a^2}=\sqrt{a^2\left(\frac{x^2+1-2x}{2x}\right)}\)
= \(a\sqrt{\frac{\left(x-1\right)^2}{2x}}\)
TƯƠNG TỰ : \(\sqrt{t^2+a^2}=a\sqrt{\frac{\left(x+1\right)^2}{2x}}\)
=> M = \(\left(\frac{\sqrt{t^2-a^2}+\sqrt{t^2+a^2}}{\sqrt{t^2-a^2}-\sqrt{t^2+a^2}}\right)^4\)
= \(\left(\frac{a\left(\sqrt{\frac{\left(x+1\right)^2}{2x}}+\sqrt{\frac{\left(x-1\right)^2}{2x}}\right)}{a\left(\sqrt{\frac{\left(x-1\right)^2}{2x}}-\sqrt{\frac{\left(x+1\right)^2}{2x}}\right)}\right)^4\)
= \(\left(\frac{\sqrt{\frac{1}{2x}}.\left(x+1+x-1\right)}{\sqrt{\frac{1}{2x}}.\left(x-1-x-1\right)}\right)^4\)
( DO X+1>X-1>0)
= \(\left(\frac{2x}{-2}\right)^4\)
= \(x^4\)
= \(2012^4\)
Bài Làm:
1, Tìm ĐKXĐ:
a, Để \(\sqrt{\frac{x^2+3}{3-2x}}\) có nghĩa thì: \(\frac{x^2+3}{3-2x}\ge0\)
Vì \(x^2+3>0\forall x\) nên \(3-2x\ge0\)
\(\Leftrightarrow x\le\frac{3}{2}\)
Vậy ...
b, Để \(\sqrt{\frac{-2}{x^3}}\) có nghĩa thì: \(\frac{-2}{x^3}\ge0\)
Vì \(-2< 0\) nên \(x^3\le0\Leftrightarrow x\le0\)
Vậy ...
c, Để \(\sqrt{x\left(x-2\right)}\) có nghĩa thì: \(x\left(x-2\right)\ge0\)
\(TH1:\left\{{}\begin{matrix}x\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ge2\end{matrix}\right.\Leftrightarrow x\ge2\)
\(TH2:\left\{{}\begin{matrix}x\le0\\x-2\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le0\\x\le2\end{matrix}\right.\Leftrightarrow x\le0\)
\(\Leftrightarrow\) \(x\ge2\) hoặc \(x\le0\)
Vậy ...
Bài 1.
1. \(\sqrt{-3x+6}\) có nghĩa khi \(-3x+6\ge0\Leftrightarrow-3x\ge-6\Rightarrow x\le2\)
2.
\( a){\left( {\sqrt 7 - \sqrt 5 } \right)^2} + 2\sqrt {35} = 7 - 2\sqrt {35} + 5 + 2\sqrt {35} = 12\\ b)3\sqrt 8 - \sqrt {50} - \sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} = 6\sqrt 2 - 5\sqrt 2 - \sqrt 2 + 1 = 1 \)
Bài 2.
\( M = \dfrac{{\sqrt a + 3}}{{\sqrt a - 2}} - \dfrac{{\sqrt a - 1}}{{\sqrt a + 2}} + \dfrac{{4\sqrt a - 4}}{{4 - a}}\\ M = \dfrac{{\left( {\sqrt a + 2} \right)\left( {\sqrt a + 3} \right) - \left( {\sqrt a - 2} \right)\left( {\sqrt a - 1} \right) - \left( {4\sqrt a - 4} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 2} \right)}}\\ M = \dfrac{{4\sqrt a + 8}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 2} \right)}}\\ M = \dfrac{{4\left( {\sqrt a + 2} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 2} \right)}}\\ M = \dfrac{4}{{\sqrt a - 2}} \)
Bài 3.
1.
\( a)\sqrt {{{313}^2} - {{312}^2}} + \sqrt {{{17}^2} - {8^2}} = \sqrt {\left( {313 - 312} \right)\left( {313 + 312} \right)} + \sqrt {\left( {17 - 8} \right)\left( {17 + 8} \right)} \\ = \sqrt {625} + \sqrt {9.25} = 25 + 3.5 = 25 + 15 = 40\\ b)\dfrac{{2 + \sqrt 2 }}{{1 + \sqrt 2 }} = \dfrac{{\sqrt 2 \left( {\sqrt 2 + 1} \right)}}{{1 + \sqrt 2 }} = \sqrt 2 \)
2. \(\left\{{}\begin{matrix}2x+y=3\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+2y=6\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x=7\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất \(\left(1;1\right)\)
3.
\(
\sqrt {9\left( {x - 1} \right)} = 21\\
\Leftrightarrow 3\sqrt {x - 1} = 21\\
\Leftrightarrow \sqrt {x - 1} = 7\\
\Leftrightarrow x - 1 = 49\\
\Leftrightarrow x = 50
\)
Thử lại $x=50$ là nghiệm
Lời giải:
ĐK: $x>0$
$t^2=a^2.\frac{x^2+1}{2x}$. Suy ra:
$t^2-a^2=a^2(\frac{x^2+1}{2x}-1)=a^2.\frac{x^2-2x+1}{2x}$
$=\frac{a^2(x-1)^2}{2x}$
$\Rightarrow \sqrt{t^2-a^2}=\frac{|a(x-1)|}{\sqrt{2x}}$
Tương tự: $\sqrt{t^2+a^2}=\frac{|a(x+1)|}{\sqrt{2x}}$
Do đó:
$B=\frac{|a(x-1)|+|a(x+1)|}{|a(x-1)|-|a(x+1)|}=\frac{|x-1|+|x+1|}{|x-1|-|x+1|}$