Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\dfrac{3}{2}-\dfrac{5}{6}+\dfrac{7}{12}\right)+\left(-\dfrac{9}{20}+\dfrac{11}{30}\right)+\left(\dfrac{-13}{42}+\dfrac{15}{56}\right)\)
\(=\dfrac{18-10+7}{12}+\dfrac{-27+22}{60}+\dfrac{-1}{24}\)
\(=\dfrac{15}{12}+\dfrac{-5}{60}+\dfrac{-1}{24}\)
\(=\dfrac{30-1+\left(-2\right)}{24}=\dfrac{27}{24}=\dfrac{9}{8}\)
A = \(\dfrac{3}{2}\) - \(\dfrac{5}{6}\) + \(\dfrac{7}{12}\) - \(\dfrac{9}{20}\) + \(\dfrac{11}{30}\) - \(\dfrac{13}{42}\) + \(\dfrac{15}{56}\) - \(\dfrac{17}{72}\)
A = (1 + \(\dfrac{1}{2}\)) - (\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\)) + (\(\dfrac{1}{3}\) + \(\dfrac{1}{4}\)) - (\(\dfrac{1}{4}\) + \(\dfrac{1}{5}\)) + (\(\dfrac{1}{5}\) + \(\dfrac{1}{6}\)) - (\(\dfrac{1}{6}\) + \(\dfrac{1}{7}\)) + (\(\dfrac{1}{7}\) + \(\dfrac{1}{8}\)) - (\(\dfrac{1}{8}\) + \(\dfrac{1}{9}\))
A = 1 + \(\dfrac{1}{2}\) - \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) + \(\dfrac{1}{8}\) - \(\dfrac{1}{8}\) - \(\dfrac{1}{9}\)
A = 1 - \(\dfrac{1}{9}\)
A = \(\dfrac{8}{9}\)
\(A=\left(1+\dfrac{1}{2}\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}\right)+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)-\left(\dfrac{1}{4}+\dfrac{1}{5}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}\right)-\left(\dfrac{1}{6}+\dfrac{1}{7}\right)+\left(\dfrac{1}{7}+\dfrac{1}{8}\right)-\left(\dfrac{1}{8}+\dfrac{1}{9}\right)\)
\(A=1+\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{1}{8}-\dfrac{1}{8}-\dfrac{1}{9}\)
\(A=1+\dfrac{1}{9}=\dfrac{10}{9}\)
\(=\dfrac{15}{7\cdot8}-\dfrac{13}{6\cdot7}+\dfrac{11}{5\cdot6}-\dfrac{9}{4\cdot5}+\dfrac{7}{3\cdot4}-\dfrac{5}{2\cdot3}+\dfrac{3}{1\cdot2}\)
\(=\dfrac{1}{8}+\dfrac{1}{7}-\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{2}\)
=1+1/8=9/8
Đề sai chắc chỗ cuối là \(\dfrac{17}{72}\)
\(S=\dfrac{3}{2}-\dfrac{5}{6}+\dfrac{7}{12}-\dfrac{9}{20}+\dfrac{11}{30}-\dfrac{13}{42}+\dfrac{15}{56}-\dfrac{17}{72}=\dfrac{1+2}{1.2}-\dfrac{2+3}{2\cdot3}+\dfrac{3+4}{3.4}-\dfrac{4+5}{4\cdot5}+\dfrac{5+6}{5.6}-\dfrac{6+7}{6.7}+\dfrac{7+8}{7.8}-\dfrac{8+9}{8\cdot9}=\dfrac{1}{2}+1-\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{4}+\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{6}+\dfrac{1}{8}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{8}=1-\dfrac{1}{9}=\dfrac{8}{9}\)
= \(\dfrac{5}{2}(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2019}-\dfrac{1}{2021})\)
= \(\dfrac{5}{2}\left(1-\dfrac{1}{101}\right)\)
= \(\dfrac{5}{2}.\dfrac{100}{101}\)
= \(\dfrac{250}{101}\)
Gợi ý: Sử dụng tính chất phân phối của phép nhân đối với phép cộng để nhóm thừa số chung ra ngoài.
\(a,\left(\dfrac{7}{20}+\dfrac{11}{15}-\dfrac{15}{12}\right):\left(\dfrac{11}{20}-\dfrac{26}{45}\right).\)
\(=\left(\dfrac{21}{60}+\dfrac{44}{60}-\dfrac{75}{60}\right):\left(\dfrac{99}{180}-\dfrac{104}{180}\right).\)
\(=\left(\dfrac{65}{60}-\dfrac{75}{60}\right):\left(-\dfrac{5}{180}\right).\)
\(=-\dfrac{10}{60}:\left(-\dfrac{5}{180}\right).\)
\(=-\dfrac{1}{6}:\left(-\dfrac{1}{36}\right).\)
\(=-\dfrac{1}{6}.\left(-36\right).\)
\(=\dfrac{-1.\left(-36\right)}{6}=\dfrac{36}{6}=6.\)
Vậy......
\(b,\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}:\dfrac{15-\dfrac{15}{11}+\dfrac{15}{121}}{16-\dfrac{16}{11}+\dfrac{16}{121}}.\)
\(=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}:\dfrac{15\left(1-\dfrac{1}{11}+\dfrac{1}{121}\right)}{16\left(1-\dfrac{1}{11}+\dfrac{1}{121}\right)}.\)
\(=\dfrac{5}{8}:\dfrac{15}{16}.\)
\(=\dfrac{5}{8}.\dfrac{16}{15}=\dfrac{5.16}{8.15}=\dfrac{1.2}{1.3}=\dfrac{2}{3}.\)
Vậy......
c, (làm tương tự câu b).
~ Học tốt!!! ~
\(Q=\dfrac{1}{2}+\dfrac{5}{6}+\dfrac{11}{12}+\dfrac{19}{20}+\dfrac{29}{30}+\dfrac{41}{42}+\dfrac{55}{56}+\dfrac{71}{72}+\dfrac{89}{90}\)
\(Q=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{1}{12}\right)+\left(1-\dfrac{1}{20}\right)+\left(1-\dfrac{1}{30}\right)+\left(1-\dfrac{1}{42}\right)+\left(1-\dfrac{1}{56}\right)+\left(1-\dfrac{1}{72}\right)+\left(1-\dfrac{1}{90}\right)\)
\(Q=9-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(Q=9-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)\)
\(Q=9-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(Q=9-\left(1-\dfrac{1}{10}\right)\)
\(Q=9-\dfrac{9}{10}\)
\(Q=\dfrac{81}{10}\)
Chúc bạn học tốt :))
B= \(\dfrac{3}{2}-\dfrac{5}{6}+\dfrac{7}{12}-\dfrac{9}{20}+\dfrac{11}{30}-\dfrac{13}{42}+\dfrac{15}{56}\)
= \(\left(1+\dfrac{1}{2}\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}\right)+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)-\left(\dfrac{1}{4}+\dfrac{1}{5}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}\right)-\left(\dfrac{1}{6}+\dfrac{1}{7}\right)+\left(\dfrac{1}{7}+\dfrac{1}{8}\right)\)
= 1+\(\dfrac{1}{8}\)=\(\dfrac{9}{8}\)