Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2008.2009+2000}{2009.2010-2018}\)
\(=\frac{2008.\left(2010-1\right)+2010}{\left(2008+1\right).2010-2018}\)
\(=\frac{2008.2010-2008+2010}{2008.2010+2010-2018}\)
\(=\frac{2008.2010+2}{2008.2010-18}\)
Mình nghĩ bài này sai đề, nếu đề là 2018 -> 2008 thì bảo mình, mình làm lại cho
= 2009 * ( 2011 - 1 ) - 1000 / 2011 * 2009 - 1009
= 2009 * 2011 - 2009 -1000 / 2011 * 2009 - 1009
= 2009 * 2011 - 1009 / 2011 * 2009 - 1009
= 1
\(\frac{2x-4,36}{0,125}=0,25.42,9-11,7.0,25+0,25.0,8\)
\(\Leftrightarrow\frac{2x-4,36}{0,125}=0,25.\left(42,9-11.7+0,8\right)\)
\(\Leftrightarrow\frac{2x-4,36}{0,125}=0,25.32\)
\(\Leftrightarrow\frac{2x-4,36}{0,125}=8\)
\(\Leftrightarrow2x-4,36=1\)
\(\Leftrightarrow2x=5,36\)
\(\Leftrightarrow x=2,68\)
b) \(N=\frac{1}{1.5}+\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{2005.2010}\)
\(\Leftrightarrow N=\frac{1}{5}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2005}-\frac{1}{2010}\right)\)
\(\Leftrightarrow N=\frac{1}{5}\left(1-\frac{1}{2010}\right)\)
\(\Leftrightarrow N=\frac{1}{5}.\frac{2009}{2010}=\frac{2009}{10050}\)
Bài 1:
a)\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot42,9-11,7\cdot0,25+0,25\cdot0,8\)
\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot\left(42,9-11,7+0,8\right)\)
\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot32\)
\(\frac{2\cdot x-4,36}{0,125}=8\)
\(2\cdot x-4,36=8\cdot0,125\)
\(2\cdot x-4,36=1\)
\(2\cdot x=1+4,36\)
\(2\cdot x=5,36\)
\(x=\frac{5,36}{2}=2,68\)
b) \(N=\frac{1}{1\cdot5}+\frac{1}{5\cdot10}+\frac{1}{10\cdot15}+\frac{1}{15\cdot20}+...+\frac{1}{2005\cdot2010}\)
\(4N=\frac{4}{1\cdot5}+\frac{4}{5\cdot10}+\frac{4}{10\cdot15}+\frac{4}{15\cdot20}+...+\frac{4}{2005\cdot2010}\)
\(4N=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2005}-\frac{1}{2010}\)
\(4N=1-\frac{1}{2010}=\frac{2009}{2010}\)
\(N=\frac{2009}{2010}\div4=\frac{2009}{8040}\)
Bài 2:
a) ( x + 5,2 ) : 3,2 = 4,7 ( dư 0,5 )
\(x+5,2=4,7\cdot3,2+0,5\)
\(x+5,2=15,54\)
\(x=15,54-5,2=10,34\)
b)\(A=\frac{4047991-2010\cdot2009}{4050000-2011\cdot2009}\)
\(A=\frac{4047991-2010\cdot2009}{4050000-2009-2010\cdot2009}\)
\(A=\frac{4047991-2010\cdot2009}{4047991-2010\cdot2009}=1\)
Bài 3:
a) \(104,5\cdot x-14,1\cdot x+9,6\cdot x=25\)
\(x\cdot\left(104,5-14,1+9,6\right)=25\)
\(x\cdot100=25\)
\(x=\frac{25}{100}=\frac{1}{4}=0,25\)
b) \(T=\frac{2009\cdot2010+2000}{2011\cdot2010-2020}\)
\(T=\frac{2009\cdot2010+2000}{2009\cdot2010+4020-2020}\)
\(T=\frac{2009\cdot2010+2000}{2009\cdot2010+2000}=1\)
\(A=\frac{2007\cdot\left(2008-1008\right)}{\left(2007-1007\right)+\left(2008-1008\right)}=\frac{2007\cdot1000}{1000+1000}=\frac{2007}{2}\)
\(B=\frac{1978\cdot1979+\left(1979+1\right)\cdot21+\left(1979-21\right)}{1979\cdot\left(1980-1978\right)}=\frac{1979\cdot\left(1978+21\right)}{1979\cdot2}=\frac{1999}{2}\)
c) \(\frac{3}{5}+\frac{3}{4}+\frac{2}{5}+\frac{5}{8}+\frac{1}{2}\)
= \(\frac{3}{5}+\frac{2}{5}+\left(\frac{6}{8}+\frac{5}{8}+\frac{4}{8}\right)\)
= 1 + \(\frac{15}{8}\)
= 2\(\frac{7}{8}\)
3/5+3/4+2/5+5/8+1/2
=(3/5+2/5)+(3/4+1/2)+5/8
=1+5/4+5/8
=1+15/8=23/8
\(1\frac{1}{2}x1\frac{1}{3}:1\frac{1}{4}:1\frac{1}{5}\)
\(=\frac{3}{2}x\frac{4}{3}:\frac{5}{4}:\frac{6}{5}\)
\(=\frac{3}{2}x\frac{4}{3}x\frac{4}{5}x\frac{5}{6}\)
\(=\frac{4x4}{2x6}=\frac{2x2x4}{2x2x3}=\frac{4}{3}\)
\(1\frac{1}{2}\times1\frac{1}{3}\div1\frac{1}{4}\div1\frac{1}{5}=\frac{3}{2}\times\frac{4}{3}\div\frac{5}{4}\div\frac{6}{5}=\frac{3}{2}\times\frac{4}{3}\times\frac{4}{5}\times\frac{5}{6}\)
\(=\frac{3\times4\times4\times5}{2\times3\times5\times6}=\frac{4}{3}\)
dễ mà
=5/9x7/4+13/9x7/4
=7/4x(5/9+13/9)
=7/4x18/9
=7/4x2
=7/2
nhớ chọn cho mih nha bn
\(=\frac{2007.2009+2007-1007}{2007.2009+2009-1009}\)
\(=\frac{2007.2009+1000}{2007.2009+1000}\)
=1