Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+..+\frac{1}{9.11}\right)\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...-\frac{1}{11}\right)\)
\(=2.\left(1-\frac{1}{11}\right)\)
\(=2.\left(\frac{11}{11}-\frac{1}{11}\right)\)
\(=2.\frac{10}{11}\)
\(=\frac{20}{11}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
$2\times A=\frac{2}{1\times 3}+\frac{2}{3\times 5}+\frac{2}{5\times 7}+...+\frac{2}{19\times 21}$
$2\times A=\frac{3-1}{1\times 3}+\frac{5-3}{3\times 5}+\frac{7-5}{5\times 7}+...+\frac{21-19}{19\times 21}$
$=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{19}-\frac{1}{21}$
$=1-\frac{1}{21}=\frac{20}{21}$
$\Rightarrow A=\frac{20}{21}: 2= \frac{10}{21}$
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) A = 20,15 x 25,75 + 74,25 x 20,15
A = 20,15 x ( 25,75 + 74,25 )
A = 20,15 x 100
A = 2015
Tính bằng cách thuận tiện nhất
a) A = 20,15 x 25,75 + 74,25 x 20,15
= 20,15 x (25,75 + 74,25)
= 20,15 x 100
= 2015
![](https://rs.olm.vn/images/avt/0.png?1311)
b ) Đặt \(A=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{101.103}\)
\(\Rightarrow A=\frac{5}{2}\left(\frac{5}{1}-\frac{5}{3}+\frac{5}{3}-\frac{5}{5}+....+\frac{5}{101}-\frac{5}{103}\right)\)
\(\Rightarrow A=\frac{5}{2}\left(5-\frac{5}{103}\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo cách mk học sẽ suy ra lun
=1/1-1/3+1/3-1/5+1/5-1/7+...+1/2001-1/2003+1/2003-1/2005
=1-1/2005
=2004/2005
![](https://rs.olm.vn/images/avt/0.png?1311)
= (1/3-1/5+1/5-1/7+1/7-1/9+....+1/25-1/27) x 3/4 = (1/3-1/27) x 3/4 = 8/27 x 3/4 = 2/9
k mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
1/2 x (6/1-6/3+6/3-6/5+ ... +6/37-6/39)
1/2 x (6/1-6/39)
1/2 x 228/39
228/78
![](https://rs.olm.vn/images/avt/0.png?1311)
sửa đề câu a và câu b nhá , mik nghĩ đề như này :
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
= \(\frac{1}{1}-\frac{1}{215}\)
\(=\frac{214}{215}\)
b, đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{213\cdot215}\)
\(A\cdot2=\frac{2}{1\cdot3}+\frac{2}{3.5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{215}\)
\(A\cdot2=\frac{214}{215}\)
\(A=\frac{214}{215}:2\)
\(A=\frac{107}{215}\)
\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{19\times21}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{21}\)
\(=1-\dfrac{1}{21}\)
\(=\dfrac{20}{21}\)