Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{7}{1.2}+\frac{7}{2.3}+\frac{7}{3.4}+...+\frac{7}{2015.2016}\right):\frac{2015}{2016}\)
=\(7\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right):\frac{2015}{2016}\)
=\(7\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right):\frac{2015}{2016}\)
=\(7\left(\frac{1}{1}-\frac{1}{2016}\right):\frac{2015}{2016}=7.\frac{2015}{2016}:\frac{2015}{2016}=7\)
\(\left(\frac{7}{1\cdot2}+\frac{7}{2\cdot3}+\frac{7}{3\cdot4}+...+\frac{7}{2015\cdot2016}\right):\frac{2015}{2016}\)
\(=\left(7-\frac{7}{2}+\frac{7}{2}-\frac{7}{3}+\frac{7}{3}-\frac{7}{4}+...+\frac{7}{2015}-\frac{7}{2016}\right):\frac{2015}{2016}\)
\(=\left(7-\frac{7}{2016}\right):\frac{2015}{2016}=\frac{2015}{288}:\frac{2015}{2016}=\frac{2015}{288}\cdot\frac{2016}{2015}=\frac{2016}{288}=7\)
\(\Rightarrow A=4.\left[\frac{6}{2.\left(2.4\right)}+\frac{5}{\left(2.4\right).13}+\frac{3}{13.\left(4.4\right)}+\frac{2}{\left(4.4\right).18}+\frac{10}{18.\left(7.4\right)}\right]\)
\(=4.\left(\frac{6}{2.8}+\frac{5}{8.13}+\frac{3}{13.16}+\frac{2}{16.18}+\frac{10}{18.28}\right)=4.\left(\frac{1}{2}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{18}+\frac{1}{18}-\frac{1}{28}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{28}\right)=4.\frac{13}{28}=\frac{13}{7}\)
A\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
Ta thấy
A\(=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)
=> A> \(\frac{1}{75}\cdot25+\frac{1}{100}\cdot25\)
=>A > 7/12
A\(=\frac{1}{51}+...+\frac{1}{60}+\left(\frac{1}{61}+...+\frac{1}{70}\right)+\left(\frac{1}{71}+...+\frac{1}{80}\right)+\left(\frac{1}{81}+...+\frac{1}{90}\right)+\left(\frac{1}{91}+...+\frac{1}{100}\right)\)>\(\frac{1}{60}\cdot10+\frac{1}{70}\cdot10+\frac{1}{80}\cdot10+\frac{1}{90}\cdot10+\frac{1}{100}\cdot10\)
>\(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\)
>1/6 *5
>5/6(chac la chuan roi day)
Bài 1
\(a,\left|x\right|=-\left|-\frac{5}{7}\right|=>x\in\varnothing\)
\(b,\left|x+4,3\right|-\left|-2,8\right|=0\)
\(=>\left|x+4,3\right|-2,8=0\)
\(=>\left|x+4,3\right|=0+2,8=2,8\)
\(=>x+4,3=\pm2,8\)
\(=>\hept{\begin{cases}x+4,3=2,8\\x+4,3=-2,8\end{cases}=>\hept{\begin{cases}x=-1,5\\x=-7,1\end{cases}}}\)
\(c,\left|x\right|+x=\frac{2}{3}\)
\(=>\hept{\begin{cases}x+x=\frac{2}{3}\\-x+x=\frac{2}{3}\end{cases}}=>\hept{\begin{cases}x=\frac{1}{3}\\x=-\frac{1}{3}\end{cases}}\)
= \(\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)
= \(\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)
= \(\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)
= \(\left(2+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)
= \(2-\frac{1}{99!}-\frac{1}{100!}<2\)
=> \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}<2\)(Đpcm)
tớ là một youtuber link đây https://www.youtube.com/channel/UCRoT6fvb0VTS8S1EFsH0qGg?sub_confimation=1 nhớ đăng ký, , chia sẻ ủng hộ giúp mình nhé
A =1.2+2.3+3.4+.............+n(n+1)
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
Ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
Thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3
\(A=1.2+2.3+3.4+...+n\left(n+1\right)\)
\(3A=1.2.3+2.3.4+3.4.3+..+3n\left(n+1\right)\)
\(=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)
\(=n\left(n+1\right)\left(n+2\right)\)
\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
ko chắc vì mk làm qua lâu òi hc tốt ~~:B~~
Đặt A = 1.2 + 2.3 + 3.4 + ... + 2015.2016
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2015.2016.3
=> 3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 2015.2016.(2017 - 2014)
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2015.2016.2017 - 2014.2015.2016
=> 3A = 2015.2016.2017
=> A = 2015.2017.672
=> A = 2 731 179 360