Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A) Vì 15 có tận cùng bằng 5 nên khi nhân với 1 số lẻ ( 2003 và 19) thì cũng sẽ có kết quả tận cùng là 5 mà 2003*19*15 = 190281 ( theo đề bài tận cùng là 1). Vậy phép tính làm sai
B) Ta có : 1783+249+65+71 = ...3+...9+...5+...1 có tận cùng là 8 trái với đề bài.Vậy phép tính làm sai

Mình đã tìm ra cách giải rồi, các bạn có thể góp ý để bài làm của mình hoàn thiện hơn nữa nha...
Ta có:\(\frac{1}{A}=\frac{\sqrt{a-2003}+\sqrt{b-2003}}{\sqrt{a+b}}=\frac{\sqrt{a-2003}}{\sqrt{a+b}}+\frac{\sqrt{b-2003}}{\sqrt{a+b}}\)
Mặt khác:\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2003}\Rightarrow\frac{a+b}{ab}=\frac{1}{2003}\Rightarrow2003=\)\(\frac{ab}{a+b} \left(1\right)\)
Thay (1) vào \(\frac{1}{A}\) ta được: \(\frac{1}{A}=\frac{\sqrt{a-\frac{ab}{a+b}}}{\sqrt{a+b}}+\frac{\sqrt{b-\frac{ab}{a+b}}}{\sqrt{a+b}}\)
\(\Leftrightarrow\frac{1}{A}=\sqrt{\frac{a-\frac{ab}{a+b}}{a+b}}+\sqrt{\frac{b-\frac{ab}{a+b}}{a+b}}\)
\(\Leftrightarrow\frac{1}{A}=\sqrt{\frac{\frac{a^2+ab-ab}{a+b}}{a+b}}+\sqrt{\frac{\frac{b^2+ab-ab}{a+b}}{a+b}}=\sqrt{\frac{a^2}{\left(a+b\right)^2}}+\sqrt{\frac{b^2}{\left(a+b\right)^2}}\)
\(\Leftrightarrow\frac{1}{A}=\left|\frac{a}{a+b}\right|+\left|\frac{b}{a+b}\right|=\frac{a}{a+b}+\frac{b}{a+b}\left(a>2003;b>2003\right)\)
\(\Leftrightarrow\frac{1}{A}=\frac{a+b}{a+b}=1\Leftrightarrow A=1\)
Vậy............................



Bài 4:
a: Chiều cao của tòa nhà là:
\(25\cdot\tan36\) ≃18,2(m)
b: Khoảng cách từ chỗ anh ta đứng đến tòa nhà khi đó là:
18,2:tan32≃29,1(m)
Bài 3:
Kẻ BH⊥AC tại H
Xét ΔAHB vuông tại H có \(\sin A=\frac{BH}{AB}\)
=>\(BH=AB\cdot\sin A\)
Xét ΔABC có BH là đường cao
nên \(S_{ABC}=\frac12\cdot BH\cdot AC=\frac12\cdot AB\cdot AC\cdot\sin BAC\)
Bài 2:
a: \(A=\frac{\sin45^0\cdot cos45^0}{\cot60^0}=\frac{\frac{\sqrt2}{2}\cdot\frac{\sqrt2}{2}}{\tan30}=\frac12:\frac{\sqrt3}{3}=\frac12\cdot\frac{3}{\sqrt3}=\frac{3}{2\sqrt3}=\frac{\sqrt3}{2}\)
b: \(B=\frac{\sin70^0\cdot\tan40^0}{cos20^0\cdot\cot50^0}=\frac{\sin70^0\cdot\tan40^0}{\sin70^0\cdot\tan40^0}=1\)
Bài 1:
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB^2=BC^2-AC^2=10^2-8^2=36=6^2\)
=>AB=6(cm)
Xét ΔABC vuông tại A có
\(\sin B=\frac{AC}{BC}=\frac{8}{10}=\frac45\)
\(cosB=\frac{BA}{BC}=\frac{6}{10}=\frac35\)
\(\tan B=\frac{AC}{BA}=\frac86=\frac43\)
\(\cot B=\frac{AB}{AC}=\frac68=\frac34\)

15:
a: Gọi giá niêm yết của mỗi cái quạt là x(đồng), giá niêm yết của mỗi cái bàn ủi hơi nước là y(đồng)
(ĐIều kiện: x>0; y>0)
Giá của mỗi cái quạt sau khi giảm giá là: \(x\left(1-10\%\right)=0,9x\) (đồng)
Giá của mỗi cái bàn ủi sau khi giảm giá là: \(y\left(1-25\%\right)=0,75\) y(đồng)
Số tiền phải trả nếu mua theo giá niêm yết là 2175000 nên x+y=2175000(1)
Số tiền phải trả nếu mua theo giá đã giảm là 1717500 nên 0,9x+0,75y=1717500(2)
Từ (1),(2) ta có hệ phương trình:
\(\begin{cases}x+y=2175000\\ 0,9x+0,75y=1717500\end{cases}\Rightarrow\begin{cases}0,9x+0,9y=1957500\\ 0,9x+0,75y=1717500\end{cases}\)
=>\(\begin{cases}0,9x+0,9y-0,9x-0,75y=1957500-1717500=240000\\ x+y=2175000\end{cases}\)
=>\(\begin{cases}0,15y=240000\\ x+y=2175000\end{cases}\Rightarrow\begin{cases}y=1600000\\ x=2175000-1600000=575000\end{cases}\) (nhận)
vậy: giá niêm yết của mỗi cái quạt là 575000(đồng), giá niêm yết của mỗi cái bàn ủi hơi nước là 1600000(đồng)
b: Giá của mỗi cái quạt sau khi giảm giá là:
\(575000\cdot0,9=517500\) (đồng)
Giá vốn của mỗi cái quạt là:
\(517500\cdot\frac{100}{115}=450000\) (đồng)
giá của mỗi cái bàn ủi hơi nước sau khi giảm giá là:
\(1600000\cdot75\%=1200000\left(đồng\right)\)
Giá vốn của mỗi cái bàn ủi là:
\(1200000\cdot\frac{100}{120}=1000000\) (đồng)
Bài 12: Gọi số cần tìm có dạng là \(\overline{ab}\)
Tổng của hai chữ số là 12 nên a+b=12
Nếu viết theo thứ tự ngược lại thì số mới lớn hơn số cũ là 18 đơn vị nên ta có:
\(\overline{ba}-\overline{ab}=18\)
=>10b+a-10a-b=18
=>-9a+9b=18
=>a-b=-2
mà a+b=12
nên \(a=\frac{-2+12}{2}=\frac{10}{2}=5;b=12-5=7\)
vậy: Số cần tìm là 57
a) - 2003 + ( -21 + 75 + 2003 )
= - ( 2003 - 2003 ) - ( 21 - 75 )
= 0 - ( -54 )
= 54
b) 1152 - ( 374 + 1152 ) + ( -65 + 374 )
= 1152 - 374 - 1152 - 65 + 374
= ( 1152 - 1152 ) - ( 574 - 374 ) - 65
= 0 - 0 - 65
= -65
a ) -2003 + (-21 + 75 + 2003)
= -2003 - 21 + 75 + 2003
= (-2003 + 2003) + (75 - 21)
= 0 + 54 = 54
b) 1152 - (374 + 1152) + (-65 + 374)
= 1152 - 374 - 1152 - 65 + 374
= (1152 - 1152) - (374 - 374) - 65
= 0 - 0 - 65 = -65