Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi M là trung điểm BC.
Dễ dàng chứng minh ∠ S B C , A B C = ∠ S M A = 60 °
⇒ S A = A M 3 = 3 2 . Đây là khối chóp có cạnh bên
vuông góc đáy nên bán kính mặt cầu ngoại tiếp được tính là: R 2 = S A 2 2 + 2 A M 3 2 = 43 48 ⇒ S = 4 πR 2 = 43 π 12 .
Ta có A D C ^ = A B C ^ = 60 ° , suy ra tam giác ADC là tam giác đều cạnh a. Gọi N là trung điểm cạnh DC, G là trọng tâm của tam giác ABC. Ta có A N = a 3 2 ; A G = a 3 3
Trong mặt phẳng (SAN), kẻ đường thẳng Gx//SA, suy ra Gx là trục của tam giác ADC.
Gọi M là trung điểm cạnh SA. Trong mặt phẳng (SAN) kẻ trung trực của SA cắt Gx tại I thì IS=IA=ID=IC nên I chính là tâm mặt cầu ngoại tiếp tứ diện S.ACD. Bán kính R của mặt cầu bằng độ dài đoạn IA.
Trong tam giác AIG vuông tại G, ta có:
Chọn D.
H là tâm của tam giác ABC, M là trung điểm của BC
Trong mp(SAM) dựng đt ss với SA cắt trung trực của SA tại I suy ra I là tâm mặt cầu ngoại tiếp
Đáp án C
Kí hiệu như hình vẽ với IP là đường trung trực của đoạn thẳng S D ⇒ S I . S O = S P . S D ⇒ R = S D 2 2 S O .
Ta có tan 60 ° = S O O D = 3 ⇒ S O = 3 2 ⇒ S D = 2 ⇒ R = 6 3 .