Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(T=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(T=2.\frac{502}{1005}=\frac{1004}{1005}\)
\(\Rightarrow T=\frac{1004}{1005}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009+2011}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2009+2011}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\frac{2010}{2011}\)
\(\Rightarrow A=\frac{1005}{2011}\)
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)....\left(1-\frac{1}{1+2+...+100}\right)\)
\(A=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right).....\left(1-\frac{1}{5050}\right)\)
\(A=\frac{2}{3}.\frac{5}{6}....\frac{5049}{5050}=\frac{4}{6}.\frac{10}{12}...\frac{10098}{10100}\)
\(A=\frac{1.4}{2.3}.\frac{2.5}{3.4}...\frac{99.102}{100.101}\)
\(A=\frac{1.2...98.99}{2.3...99.100}.\frac{4.5...102}{3.4...101}=\frac{1}{100}.\frac{102}{3}\)
Vậy \(A=\frac{102}{300}=\frac{17}{50}\)
\(A=\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).....\left(1-\frac{1}{1+2+...+100}\right)\)
\(=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)...\left(1-\frac{1}{5050}\right)\)
\(=\frac{2}{3}.\frac{5}{6}.....\frac{5049}{5050}\)
\(=\frac{4}{6}.\frac{10}{12}.....\frac{10098}{10100}\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.....\frac{99.102}{100.101}\)
\(=\frac{1.2.3..98.99}{2.3.4..99.100}.\frac{4.5.6...102}{3.4.5...101}\)
\(=\frac{1}{100}.\frac{102}{3}\)
\(=\frac{17}{50}\)
a)
\(=\frac{3}{2}.\frac{4}{3}......\frac{100}{99}=\frac{100}{2}=50\)
b)
\(=\frac{\left(-1\right)}{2}.\frac{\left(-2\right)}{3}.....\frac{\left(-99\right)}{100}=\frac{-1}{100}\)
\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)..........\left(\frac{1}{99}+1\right)\)
\(=\frac{3}{2}.\frac{4}{3}.........\frac{100}{99}\)
\(=\frac{100}{2}=50\)
\(B=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).........\left(\frac{1}{100}-1\right)\)
\(=-\frac{1}{2}.-\frac{2}{3}..........-\frac{99}{100}\)
\(=\frac{-1}{100}\)
\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)......\left(\frac{1}{99}+1\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(=\frac{3.4.5.....100}{2.3.4.....99}\)
\(=\frac{100}{2}=50\)