\(B=1.2+2.3+3.4+......+100.101\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2015

B=1.2+2.3+3.4+...+100.101

=>3B=1.2.3+2.3.3+3.4.4+....+100.101.3

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+....+100.101.102-99.100.101

=-0.1.2-100.101.102

=1030200

=>B=1030200:3=343400

5 tháng 7 2015

B = 1.2+2.3 +.......+99.100+100.101

3B= 1.2.3+2.3.4+3.4.3 +......+ 99.100.3 + 100.101.3

3B= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98) . 100.101.(102 - 99)

3B = (1.2.3 + 2.3.4 + 3.4.5 +...... + 99.100.101 + 100.101.102) - (0.1.2 + 1.2.3 + 2.3.4 +.......+ 98.99.100.99.100.101)

3B = 100.101.102 - 0.1.2

3B = 1030200 - 0

3B= 1030200

B =  1030200 : 3

B =  343400

27 tháng 4 2017

A= 1/1-1/2+1/2-1/3+1/4-1/5+...+1/101-1/102

A=1-1/102=102/102-1/102=101/102

ý b thì chờ mình tí tìm cách lập luận đã nhé

27 tháng 4 2017

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}+\frac{1}{101.102}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{102}\)

\(A=1-\frac{1}{102}\)

\(A=\frac{101}{102}\)

28 tháng 7 2017

=> 3.( \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{100.101}\))

=> 3.(\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+...+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\))

=> 3.(\(\dfrac{1}{1}\)-\(\dfrac{1}{101}\))

=> 3. \(\dfrac{100}{101}\)

=> \(\dfrac{300}{101}\)

Tick cho mk nhé, chúc bạn học tốtleu

28 tháng 7 2017

\(\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{100.101}\)

= \(3.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{100.101}\right)\)

= \(3.\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...\dfrac{1}{100}-\dfrac{1}{101}\right)\).

= \(3.\left(1-\dfrac{1}{101}\right)\)= \(3.\dfrac{100}{101}=\dfrac{300}{101}\).

3 tháng 5 2018

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{100^2}{100.101}\)

\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}...\frac{100.100}{100.101}\)

\(=\frac{1.1.2.2.3.3...100.100}{1.2.2.3.3.4...100.101}\)

\(=\frac{\left(1.2.3...100\right).\left(1.2.3...100\right)}{\left(1.2.3....100\right).\left(2.3.4...101\right)}\)

\(=\frac{1.1}{1.101}\)

\(=\frac{1}{101}\)

3 tháng 5 2018

\(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}.....\frac{100^2}{100\cdot101}\)

\(=\frac{1.1}{1\cdot2}\cdot\frac{2.2}{2.3}\cdot\frac{3.3}{3.4}.....\frac{100.100}{100.101}\)

\(=\frac{\left(1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot\cdot100\right)\left(1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot100\right)}{\left(1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot101\right)}\)

\(=\frac{1}{101}\)

\(\frac{1.1}{1.2}.\frac{2.2}{2.3}\frac{3.3}{3.4}...\frac{100.100}{100.101}\)

\(=\frac{\left(1.2.3...100\right).\left(1.2.3...100\right)}{\left(1.2.3...100\right).\left(2.3...101\right)}\)

\(=\frac{1}{1.101}\)

\(=\frac{1}{101}\)

k cho mk nha

25 tháng 9 2019

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{100^2}{100.101}\)

\(=\frac{1.1.2.2.3.3...100.100}{1.2.2.3.3.4.4...100.101}\)

\(=\frac{\left(1.2.3...100\right)\left(1.2.3...100\right)}{\left(1.2.3..100\right)\left(2.3.4...101\right)}=\frac{1}{101}\)

11 tháng 5 2015

=2(1/1.2+1/2.3+...+1/100.101)

=2(1/1-1/2+1/2-...+1/100-1/101)

=2(1-1/101)

=2.100/101

=200/101

11 tháng 5 2015

2/1.2+2/2.3+2/3.4+...+2/100.101

= 2(2/1.2+2/2.3+2/3.4+...+2/100.101)

= 2(1/1.2+1/2.3+1/3.4+...+1/100.101)

= 2(1/1-1/2+1/2-1/3+1/3-1/4+...+1/100-1/101)

= 2.(1/1-1/101)

= 2.100/101

= 200/101

Cho mình 1 đ-ú-n-g nha bạn

3 tháng 4 2018

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.............\frac{100^2}{100.101}\)

\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}..........\frac{100.100}{100.101}\)

\(=\frac{\left(1.2.3............100\right).\left(1.2.3..........100\right)}{\left(1.2.3..........100\right)\left(2.3.4...........101\right)}\)

\(=\frac{1}{101}\)