\(\left(200^{-2}-1\right).......\left(101^{-2}-1\right)\)

AI NHANH K NHA...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

Áp dụng tính chất a2 - b2 = a2 - ab + ab - b2 = a(a - b) + b(a - b) = (a + b)(a - b)

B =\(\left(200^{-2}-1\right)\left(199^{-2}-1\right)...\left(101^{-2}-1\right)=\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)

\(=\frac{1-200^2}{200^2}.\frac{1-199^2}{199^2}...\frac{1-101^2}{101^2}=\frac{1^2-200^2}{200^2}.\frac{1^2-199^2}{199^2}....\frac{1^2-101^2}{101^2}\)

\(=\frac{\left(1-200\right)\left(1+200\right)}{200^2}.\frac{\left(1-199\right)\left(1+199\right)}{199^2}...\frac{\left(1-101\right)\left(1+101\right)}{101^2}\)

\(=-\left(\frac{199.201}{200^2}.\frac{198.200}{199^2}...\frac{100.102}{101^2}\right)=-\frac{199.201.198.200..100.102}{200.200.199.199...101.101}\)

\(=-\frac{\left(199.198...100\right)\left(201.200...102\right)}{\left(200.199...101\right).\left(200.199...101\right)}=-\frac{100.201}{200.101}=-\frac{201}{202}\)

12 tháng 8 2020

                                          Bài giải

\(B=\left(200^{-2}-1\right)\left(199^{-2}-1\right)\left(198^{-2}-1\right)...\left(101^{-2}-1\right)\)

\(B=\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)\left(\frac{1}{198^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)

\(B=\left[\left(\frac{1}{200}\right)^2-1^2\right]\left[\left(\frac{1}{199}\right)^2-1^2\right]\left[\left(\frac{1}{198}\right)^2-1^2\right]...\left[\left(\frac{1}{101}\right)^2-1^2\right]\)

\(B=\left(\frac{1}{200}+1\right)\left(\frac{1}{200}-1\right)\left(\frac{1}{199}+1\right) \left(\frac{1}{199}-1\right)..\left(\frac{1}{101}-1\right)\left(\frac{1}{101}+1\right)\)

\(B=\frac{201}{200}\cdot\frac{-199}{200}\cdot\frac{200}{199}\cdot\frac{-198}{199}\cdot...\cdot\frac{-100}{101}\cdot\frac{102}{101}\)

\(B=\frac{201\cdot\left(-199\right)\cdot200\cdot\left(-198\right)\cdot...\cdot\left(-100\right)\cdot102}{200\cdot200\cdot199\cdot199\cdot...\cdot101\cdot101}=\frac{100\cdot201}{200\cdot101}=\frac{201}{202}\)

1 tháng 9 2020

\(A=202\left(200^{-2}-1\right)\left(199^{-2}-1\right)\left(198^{-2}-1\right)...\left(101^{-2}-1\right)\)

\(=202\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)\left(\frac{1}{198^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)

\(=-202\left(1-\frac{1}{200^2}\right)\left(1-\frac{1}{199^2}\right)\left(1-\frac{1}{198^2}\right)...\left(1-\frac{1}{101^2}\right)\)

\(=-202\left(\frac{199.201}{200^2}\right).\left(\frac{198.200}{199^2}\right).\left(\frac{197.199}{198^2}\right)...\left(\frac{102.100}{101^2}\right)\)

\(=-202.\frac{199.201.198.200.197.199...100.102}{200^2.199^2.198^2...101^2}\)

\(=-202.\frac{\left(199.198.197...100\right)\left(201.200.199...102\right)}{\left(200.199.198...101\right)\left(200.199.198...101\right)}\)

\(=-202.\frac{1.201}{2.101}=-202.\frac{201}{202}=-201\)

23 tháng 9 2015

1, \(5-\left(-\frac{5}{11}\right)^0+\left(\frac{1}{3}\right)^2.\frac{1}{3}=5-1+\frac{1}{9}.\frac{1}{3}=4+\frac{1}{27}=4\frac{1}{27}\)

2, \(2^3+3.1+\left(4.2\right).8=8+3+8.8=75\)

ko cần lk đâu 

P = x3 - 6x2 + 12x -8 + 6(x2 - 2x + 1 )  - (x3 + 1 )

   = x3 - 6x2 + 12x -8 + 6x2 - 12x + 6 - x3 - 1

    =  -3

\(\Rightarrow\)P ko phụ thuộc vào giá trị của x

#mã mã#

3 tháng 11 2019

Ok , mình sẽ làm !

Ta có :

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b}{c}-1+1=\frac{b+c}{a}-1+1=\frac{c+a}{b}-1+1\)

\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\left(1\right)\)

+) Trường hợp 1 : \(a+b+c=0\)

\(\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)

Ta có :

 \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{-a}{a}.\frac{-c}{c}.\frac{-b}{b}\)

\(\Leftrightarrow P=-1.\left(-1\right).\left(-1\right)=-1\)

+) Trường hợp 2 : \(a+b+c\ne0\)

Áp dụng tính chất của dãy tỉ số bằng nhau cho ( 1 ) , ta có :

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)

Ta lại có :

 \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)

\(\Leftrightarrow P=\frac{a+b}{a}.\frac{a+c}{c}.\frac{c+b}{b}\)

\(\Leftrightarrow P=2.2.2=8\)

Vậy....................

3 tháng 11 2019

Đề sai nhé bạn ! Bạn kiểm tra lại!

28 tháng 9 2016

Ta có \(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{2014^2}\right)\)

\(=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)...\left(\frac{2014^2-1}{2014^2}\right)\)

\(=\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right)\left(3+1\right)}{3^2}...\frac{\left(2014-1\right)\left(2014+1\right)}{2014^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{2013.2015}{2014.2014}\)

\(=\frac{1.2...2013}{2.3...2014}.\frac{3.4...2015}{2.3...2014}\)

\(=\frac{1}{2014}.\frac{2015}{2}\)

\(=\frac{2015}{2014.2}>\frac{1}{2}\)hay -A>1/2

=>\(A< \frac{-1}{2}\)hay A<B

21 tháng 8 2019

\(x+\left(\frac{1}{2}\right)^3=\frac{1}{4}\)

\(x+\frac{1}{8}=\frac{1}{4}\)

\(x=\frac{1}{4}-\frac{1}{8}\)

\(x=\frac{4}{16}-\frac{2}{16}\)

\(x=\frac{1}{8}\)

Vậy \(x=\frac{1}{8}\)

b) \(\left(\frac{2}{3}\right)^3-x=\frac{1}{3}\)

      \(\frac{8}{27}-x=\frac{1}{3}\)

                    \(x=\frac{8}{27}-\frac{1}{3}\)

                    \(x=\frac{8}{27}-\frac{9}{27}\)

                     \(x=-\frac{1}{27}\)

Vậy \(x=-\frac{1}{27}\)

c) \(x.\left(-\frac{1}{2}\right)^4=\frac{3}{8}\)

 \(x.\frac{1}{16}=\frac{3}{8}\)

       \(x=\frac{3}{8}:\frac{1}{16}\)

        \(x=\frac{3}{8}.16\)

      \(x=6\)

c) \(\left(\frac{1}{2}\right)^3.x=\left(\frac{1}{2}\right)^5\)

\(x=\left(\frac{1}{2}\right)^5:\left(\frac{1}{2}\right)^3\)

\(x=\left(\frac{1}{2}\right)^2\)

\(x=\frac{1}{4}\)

Vậy \(x=\frac{1}{4}\)

Chúc bạn học tốt !!!

21 tháng 8 2019

a) \(x+\left(\frac{1}{2}\right)^3=\frac{1}{4}\Leftrightarrow x+\frac{1}{8}=\frac{1}{4}\Leftrightarrow x=\frac{1}{4}-\frac{1}{8}\Leftrightarrow x=\frac{1}{8}\)

b) \(\left(\frac{2}{3}\right)^3-x=\frac{1}{3}\Leftrightarrow\frac{8}{27}-x=\frac{1}{3}\Leftrightarrow-x=\frac{1}{3}-\frac{8}{27}\Leftrightarrow-x=\frac{1}{27}\Leftrightarrow x=-\frac{1}{27}\)

c) \(x.\left(\frac{-1}{2}\right)^4=\frac{3}{8}\Leftrightarrow x.\frac{1}{16}=\frac{3}{8}\Leftrightarrow x=\frac{3}{8}:\frac{1}{16}\Leftrightarrow x=6\)

d) \(\left(\frac{1}{2}\right)^2.x=\left(\frac{1}{2}\right)^5\Leftrightarrow\frac{1}{8}.x=\frac{1}{32}\Leftrightarrow x=\frac{1}{32}:\frac{1}{8}\Leftrightarrow x=\frac{1}{4}\)