\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

Sửa lại đề : \(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow xy+yz+xz=0\)

\(\Rightarrow\hept{\begin{cases}xy=-yz-xz\\yz=-xy-xz\\zx=-yz-xy\end{cases}\left(1\right)}\)

Thay (1) vào A, ta có :

\(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)

\(=\frac{yz}{x^2+yz-xy-xz}+\frac{xz}{y^2+xz-yz-xy}+\frac{xy}{z^2+xy-yz-xz}\)

\(=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-z\right)\left(y-x\right)}+\frac{xy}{\left(z-y\right)\left(z-x\right)}\)

\(=\frac{yz}{\left(x-y\right)\left(x-z\right)}-\frac{xz}{\left(y-z\right)\left(x-y\right)}+\frac{xy}{\left(z-y\right)\left(z-x\right)}\)

\(=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=1\)

14 tháng 10 2019

a) \(x:y:z=2:3:4\)=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)=>\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{16}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{16}\)\(=\frac{x^2-2y^2+z^2}{4-18+16}\)\(=\frac{x^2-2y^2+z^2}{2}\)(1)

Ta lại có :\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{2}.\frac{y}{3}=\frac{y^2}{9}\)=> \(\frac{2xy}{12}=\frac{y^2}{9}=\frac{2xy+y^2}{12+9}=\frac{2xy+y^2}{21}\)(2)

Từ (1),(2) có: \(\frac{x^2-2y^2+z^2}{2}=\frac{2xy+y^2}{21}\)=>\(\frac{x^2-2y^2+z^2}{2xy+y^2}=\frac{2}{21}\)

18 tháng 11 2019

Ta có : M = \(\frac{x+y}{z}+\frac{x+z}{y}=\frac{y+z}{x}\)

\(\Rightarrow M+3=\left(\frac{x+y}{z}+1\right)+\left(\frac{x+z}{y}+1\right)+\left(\frac{y+z}{x}+1\right)\)

\(\Rightarrow M+3=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}\)

\(\Rightarrow M+3=\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Rightarrow M+3=2020.\frac{1}{202}\)

=> M + 3 = 10

=> M = 7

Vậy M = 7

18 tháng 11 2019

b) Ta có : \(A=\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2017^2}\)

\(=\frac{2}{3.3}+\frac{2}{5.5}+\frac{2}{7.7}+...+\frac{2}{2017.2017}\)

\(< \frac{2}{\left(3+1\right)\left(3-1\right)}+\frac{2}{\left(5-1\right)\left(5+1\right)}+\frac{2}{\left(7-1\right)\left(7+1\right)}+...+\frac{2}{\left(2017-1\right)\left(2016-1\right)}\)

\(=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2016.2018}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2016}-\frac{1}{2018}\)

\(=\frac{1}{2}-\frac{1}{2018}\)

\(=\frac{1008}{2018}=\frac{504}{1009}\)

=> \(A< \frac{504}{1009}\left(\text{ĐPCM}\right)\)

21 tháng 11 2019

BÀi 2:

Cả 4 câu áp dụng tính chất này: \(\sqrt{a^2}=a\)

a)\(\sqrt{\frac{3^2}{7^2}}=\frac{3}{7}\)

b)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{92^2}}=\frac{3+39}{7+92}=\frac{42}{99}=\frac{14}{33}\)

c)\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\frac{3-39}{7-91}=\frac{-36}{-84}=\frac{3}{7}\)

d)\(\sqrt{\frac{39^2}{91^2}}=\frac{39}{91}=\frac{3}{7}\)

21 tháng 11 2019

b)Vì BCNN(3;5) = 15

\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.5}=\frac{y}{3.5}=\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{5.3}=\frac{z}{7.3}=\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)

Vậy...

c)Vì BCNN(2;3;5) = 30

\(\Rightarrow2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

WTFFFFFF>>>

d)dễ... áp dụng tính chất DTBN là ra 1/2 rồi tính

e)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(x=\frac{y}{2}=\frac{z}{4}=\frac{4x}{4}=\frac{3y}{6}=\frac{2x}{8}=\frac{4x-3y+2x}{4-6+8}=\frac{36}{6}=6\)

\(\Rightarrow\left\{{}\begin{matrix}x=6.1=6\\y=6.2=12\\z=6.4=24\end{matrix}\right.\)

Vậy...

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)Bài 2: Tìm x, y, z thão mãn:a. \(2x=3y=7z\) và  \(x+y+z-13=0\)b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot...
Đọc tiếp

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)

Bài 2: Tìm x, y, z thão mãn:

a. \(2x=3y=7z\) và  \(x+y+z-13=0\)

b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)

c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)

d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)

e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot y=15\)

f. \(\frac{x^2-y^2}{3}=\frac{y^2+x^2}{-5}=x^{10}\cdot y^{10}=1024\)

g. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)

h. \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

i. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x\cdot y+y\cdot z+x\cdot z=31\)

k. \(7x=3y:5y=7z\)  và \(x\cdot y+x\cdot z-y\cdot z=4\)

 Bìa 3: Tính 

\(Cho \frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Tính

\(a. A=\frac{5x+3y}{5y-4z}\)

\(b. B=\frac{x+2y-3z}{3y+2z-5x}\)

\(c. C=\frac{2y-3z}{x+y+z}\)

Bài 4: 

\(Cho \frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) với \(a+b+c\ne0\) và \(a=2011\)
Tính b và 3b-4c

0
7 tháng 2 2019

Nhanh k cho nè

7 tháng 2 2019

làm lần lượt nhá,dài dòng quá khó coi.ahihihi!

\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)

\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)

Đặt 

\(3x=4y=k\Rightarrow\frac{x}{4}=\frac{y}{3}=k\Rightarrow x=4k;y=3k.\)

Thay vào biểu thức ta có :

x2 + y2 = 25

=> ( 4k )2 + ( 3k )2 = 25

=> 16k2 + 9k2 = 25 

=> k2 .( 16 + 9 ) = 25

=> k2 . 25 = 25

=> k= 1 

=> k = 1 

\(\Rightarrow\frac{x}{4}=1\Rightarrow x=4\)

\(\frac{y}{3}=1\Rightarrow y=3\)

Vậy x = 4 ; y = 3 

các phần khác làm tương tự nha 

14 tháng 9 2019

Tìm x;y;z biết : 

a) Giải

Từ \(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\)

Đặt \(\frac{x}{4}=\frac{y}{3}=k\)

\(\Rightarrow x=4k;y=3k\left(1\right)\)

Lại có : \(x^2+y^2=25\left(2\right)\)

Thay (1) vào (2) ta có : 

\(\left(4k\right)^2+\left(3k\right)^2=25\)

\(\Rightarrow k^2.4^2+k^2.3^2=25\)

\(\Rightarrow k^2.16+k^2.9=25\)

\(\Rightarrow k^2.\left(16+9\right)=25\)

\(\Rightarrow k^2.25=25\)

\(\Rightarrow k^2=1^2\)

\(\Rightarrow k=\pm1\)

Nếu k = 1

=> x = 3.1 = 3 ;

     y = 4.1 = 4

Vậy x = 3 ; y = 4