\(\frac{\left(2018^2-2014\right)\left(2018^2+4016-3\right).2009}{2005.2007.2010.2012}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2018

= 2009

Hk tốt

4 tháng 1 2018

20082+4016-3

=20082+2.2008.1+1-4

=(2008+1)2-4

=20092-22

=2007.2011

rút gọn ta được:

\(\dfrac{\left(2008^2-2014\right).2009}{2005.2010}\) (1)

Tiếp theo bạn có thể :

Đặt 2008=x

--> 20082-2014=x2-x-6

giải phương trình trên ta được:

x2-x-6=(x-3).(x+2)

lúc này:

(x-3).(x+2)=(2008-3).(2008+2)=2005.2010 (2)

Từ (1) và (2):

=>\(\dfrac{2005.2010.2009}{2005.2010}\)= 2009

11 tháng 8 2017

ai nay dung kinh nghiem la chinh

cau a)

ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)

\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)

khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)

\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)

\(x=\frac{3-1}{1}=2\)

suy ra 

x^3-4x+1=1

A=1^2018

A=1

b)

ta thay

\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)

khi do 

\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)

\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)

x=2

thay vao

x^3+3x-14=0

B=0^2018

B=0