Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1.2.3 + 2.3.4 + ....+ 48.49.50
=> 4A = 1.2.3.4 + 2.3.4.(5-1) + ...+ 48.49.50.(51-17)
= 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + .....+ 48.49.50.51 - 47.48.49.50
= 48.49.50.51
=> A = 48.49.50.51:4 = 12.49.50.51
bài b) làm tương tự nha
C=\(\frac{n.\left(n+1\right).\left(n+2\right).\left(n+3\right)}{4}\)
4( 1 . 2 .3 ) = 1.2.3.4-0.1.2.3
4(2.3.4) = 2.3.4.5 - 1.2.3.4
4(3.4.5)=3.4.5.6 - 2.3.4.5
4(n-1)n(n+1)=(n-1)n(n+1)(n+1)-(n-2)(n-1)n(n+1)
=> 4B = (n-1)n(n+1)(n+2) => B = (n-1)n(n+1)(n+2) : 4
k nha
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]
= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)
=>B=(n-1)n(n+1)(n+2)/4
\(B=1.2.3+2.3.4+....+\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow4B=4.1.2.3+4.2.3.4+...+4\left(n-1\right)n\left(n+1\right)\)
\(4B=\left(4-0\right).1.2.3+\left(5-1\right).2.3.4+...+\left[\left(n+2\right)-\left(n-2\right)\left(n-1\right)n\left(n+1\right)\right]\)
\(4B=1.2.3.4-0.1.2.3.4+2.3.4.5-1.2.3.4+....+\left(n+1\right)n\left(n+1\right)\left(n+2\right)-\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)\(4B=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow B=\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
Đặt biểu thức là A, ta có:
3A= \(\frac{3}{1\times2\times3}+\frac{3}{2\times3\times4}+...+\frac{3}{n\left(n+1\right)\left(n+2\right)}\)
3A = \(\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
3A = \(\frac{1}{1\times2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
=>A = \(\frac{3}{2}\) - \(\frac{3}{\left(n+1\right)\left(n+2\right)}\)
Phần b bạn làm tương tự
4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4
4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]
4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)
4A = (n – 1).n(n + 1).(n + 2)
A = (n – 1).n(n + 1).(n + 2) : 4.
\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{\left(n-1\right).n.\left(n+1\right)}+...+\frac{1}{23.24.25}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}-\frac{1}{n.\left(n+1\right)}+...+\frac{1}{23.24}-\frac{1}{24.25}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{24.25}\right)=\frac{299}{1200}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{23.24.25}\right)=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{23.24}-\frac{1}{24.25}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{600}\right)=\frac{1}{2}.\frac{299}{600}=\frac{299}{1200}\)
\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{23.24.25}\)
\(S=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{23.24}-\frac{1}{24.25}\right)\)
\(S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{24.25}\right)\)
\(S=\frac{1}{4}-\frac{1}{24.50}\)
Dễ thấy với mọi số tự nhiên n > 1 , ta có :
\(\frac{2}{\left(n-1\right).n.\left(n+1\right)}=\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right).n.\left(n+1\right)}=\frac{1}{\left(n-1\right).n}-\frac{1}{n.\left(n+1\right)}\)
Sử dụng hệ thức trên cho từng số hạng trong tổng sau :
\(2S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{\left(n-1\right).n.\left(n+1\right)}+\frac{2}{23.24.25}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{\left(n-1\right).n}-\frac{1}{n.\left(n+1\right)}+...+\frac{1}{23.24}-\frac{1}{24.25}\)
Để ý rằng trong vế phải của hệ thức trên , trừ 2 số hạng đầu và cuối , các số hạng còn lại tạo thành từng cặp đối nhau.
Do đó , có thể rút gọn :
\(2S=\frac{1}{1.2}-\frac{2}{24.25}=\frac{299}{600}\)
Vậy , ta được \(S=\frac{299}{600}\)
549 + X = 1326
X = 1326 - 549
X = 777
X - 636 = 5618
X = 5618 + 636
X = 6254
S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1)
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4
ghi dọc cho dễ nhìn:
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1)
ad cho k chạy từ 2 đến n ta có:
1.2.3.4 = 1.2.3.4
2.3.4.4 = 2.3.4.5 - 1.2.3.4
3.4.5.4 = 3.4.5.6 - 2.3.4.5
...
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn)
4S = (n-1)n(n+1)(n+2)
=> S = (n-1)n(n+1)(n+2)/4