Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 7/7.17 + 7/17.27 + 7/27.37 + ............ +7/1997.2007
A=7/10 ( 10/7.17 + 10/17.27 + 10/27.37 + ................+10/1997.2007)
A= 7/10 ( 1/7 -1/17 + 1/17 - 1/27 + 1/27 - 1/37 +...............+ 1/1997 - 1/2007)
A= 7/10 (1/7 - 1/2007)
A= 7/10 . 2000/14049
A=200/2007
bây h mk có vc rùi tích đúng nha tối mk lm típ cho
\(B=\frac{1}{17}+\frac{7}{17\cdot27}+\frac{7}{27\cdot37}+...+\frac{7}{1997\cdot2007}\)
\(B=\frac{1}{17}+\frac{7}{10}\left(\frac{10}{17\cdot27}+\frac{10}{27\cdot37}+...+\frac{10}{1997\cdot2007}\right)\)
\(B=\frac{1}{17}+\frac{7}{10}\left(\frac{1}{17}-\frac{1}{27}+\frac{1}{27}-\frac{1}{37}+...+\frac{1}{1997}-\frac{1}{2007}\right)\)
\(B=\frac{1}{17}+\frac{7}{10}\left(\frac{1}{17}-\frac{1}{2007}\right)\)
\(B=\frac{1}{17}+\frac{7}{10}\cdot\frac{1990}{34119}\)
\(B=\frac{1}{17}+\frac{1393}{34119}\)
\(B=\frac{200}{2007}\)
a) B = | 2x - 3 | - 7
| 2x - 3 | ≥ 0 ∀ x => | 2x - 3 | - 7 ≥ -7
Đẳng thức xảy ra <=> 2x - 3 = 0 => x = 3/2
=> MinB = -7 <=> x = 3/2
C = | x - 1 | + | x - 3 |
= | x - 1 | + | -( x - 3 ) |
= | x - 1 | + | 3 - x | ≥ | x - 1 + 3 - x | = | 2 | = 2
Đẳng thức xảy ra khi ab ≥ 0
=> ( x - 1 )( 3 - x ) ≥ 0
=> 1 ≤ x ≤ 3
=> MinC = 2 <=> 1 ≤ x ≤ 3
b) M = 5 - | x - 1 |
- | x - 1 | ≤ 0 ∀ x => 5 - | x - 1 | ≤ 5
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MaxM = 5 <=> x = 1
N = 7 - | 2x - 1 |
- | 2x - 1 | ≤ 0 ∀ x => 7 - | 2x - 1 | ≤ 7
Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2
=> MaxN = 7 <=> x = 1/2
Trong tập chứa x
Ta thấy: \(-\frac{3}{20}>-\frac{1}{2}>-\frac{1}{4}>-\frac{7}{10}\)
Trong tập chứa y
Ta thấy: \(\frac{11}{21}< \frac{4}{7}< \frac{2}{3}\)
a) Giá trị lớn nhất của x+y khi x lớn nhất và y lớn nhất
\(\frac{2}{3}+\left(-\frac{3}{20}\right)=\frac{31}{60}\)
b) Giá trị bé nhất của x+y khi x bé nhất và y bé nhất
\(\frac{11}{21}+\left(-\frac{7}{10}\right)=-\frac{3}{20}\)
\(\frac{2^5+2^6+2^7+2^8}{2^9+2^{10}+2^{11}+2^{12}}\)
\(=\frac{1\left(2^5+2^6+2^7+2^8\right)}{2^4\left(2^5+2^6+2^7+2^8\right)}\)
\(=\frac{1}{2^4}=\frac{1}{16}\)
Ta có \(\frac{1}{16}< \frac{1}{6}\)
=> \(\frac{2^5+2^6+2^7+2^8}{2^9+2^{10}+2^{11}+2^{12}}< \frac{1}{6}\)
So sánh \(\frac{2^5+2^6+2^7+2^8}{2^9+2^{10}+2^{11}+2^{12}}\) với \(\frac{1}{6}\) ?
Ta có: \(\frac{2^5+2^6+2^7+2^8}{2^9+2^{10}+2^{11}+2^{12}}=\frac{2^5.\left(1+2+2^2+2^3\right)}{2^9.\left(1+2+2^2+2^3\right)}\)
\(=\frac{1}{2^4}=\frac{1}{16}< \frac{1}{6}\)
Vậy \(\frac{2^5+2^6+2^7+2^8}{2^9+2^{10}+2^{11}+2^{12}}< \frac{1}{6}\)
\(B=\frac{1}{17}+\frac{7}{17\cdot27}+\frac{7}{27\cdot37}+...+\frac{7}{1997\cdot2007}\)
\(B=\frac{1}{17}+\frac{7}{10}\left[\frac{10}{17\cdot27}+\frac{10}{27\cdot37}+...+\frac{10}{1997\cdot2007}\right]\)
\(B=\frac{1}{17}+\frac{7}{10}\left[\frac{1}{17}-\frac{1}{27}+\frac{1}{27}-\frac{1}{37}+...+\frac{1}{1997}-\frac{1}{2007}\right]\)
\(B=\frac{1}{17}+\frac{7}{10}\left[\frac{1}{17}-\frac{1}{2007}\right]=\frac{1}{17}+\frac{1393}{34119}=\frac{200}{2007}\)