\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-\left(\sqrt{20}-3\right)}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20}+3}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{6-\sqrt{20}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)

23 tháng 7 2017

\(B=\sqrt{6+2\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}=\sqrt{6+2\sqrt{5-\left(2\sqrt{3}+1\right)}}\)

\(B=\sqrt{6+2\sqrt{5-2\sqrt{3}-1}}=\sqrt{6+2\sqrt{4-2\sqrt{3}}}=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(B=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{6+2\sqrt{3}-2}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(B=\sqrt{3}+1\)

24 tháng 6 2018

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\\ =\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20+9-6\sqrt{20}}}}\\ =\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\\ =\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20}+3}}\\ =\sqrt{\sqrt{5}-\sqrt{5+1-2\sqrt{5}}}\\ =\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\\ =\sqrt{\sqrt{5}-\sqrt{5}+1}\\ =\sqrt{1}=1\)

\(B=\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\\ =\sqrt{6+2\sqrt{5-\sqrt{12+1+2\sqrt{12}}}}\\ =\sqrt{6+2\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}\\ =\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\\ =\sqrt{6+2\sqrt{3+1-2\sqrt{3}}}\\ =\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\\ =\sqrt{6+2\sqrt{3}-2}\\ =\sqrt{3+1+2\sqrt{3}}\\ =\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\\ =\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+3+4\sqrt{3}}}}}\\ =\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(\sqrt{3}+2\right)^2}}}}\\ =\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{3}-20}}}\\ =\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{25+3-10\sqrt{3}}}}\\ =\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\\ =\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\\ =\sqrt{4+\sqrt{25}}=\sqrt{4+5}=\sqrt{9}=3\)

\(D=\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\\ \text{Ta có }:\left(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\right)^2\\ =3+\sqrt{5}-2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}+3-\sqrt{5}\\ =6-2\sqrt{9-5}=6-2\sqrt{4}=6-4=2\\ \Rightarrow\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}=\sqrt{2}\\ \Rightarrow\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}=\sqrt{2}-\sqrt{2}=0\)

4 tháng 10 2020

a) \(\sqrt{\sqrt{5}-\sqrt{3}-\sqrt{29-6\sqrt{20}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3}-\sqrt{\left(\sqrt{20}-3\right)}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3}-2\sqrt{5}+3}\)

\(=\sqrt{3-\sqrt{3}-\sqrt{5}}\)

11 tháng 7 2018

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.2\sqrt{5}.3}+9}}=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\) \(B=\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\sqrt{5-\sqrt{12+2.2\sqrt{3}+1}}}=\sqrt{6+2\sqrt{3-2\sqrt{3}+1}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{3+2\sqrt{3}+1}=\sqrt{3}+1\)

9 tháng 7 2019

\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.2\sqrt{5}.3+9}}}\)

 \(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5-2.\sqrt{5}.1+1}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)

\(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)

tương tự như trên 

\(=\sqrt{6+2\sqrt{5}-\left(2\sqrt{5}-3\right)}\)

\(=\sqrt{6+2\sqrt{5}-2\sqrt{5}+3}=\sqrt{9}=3\)

chúc bn học tốt

10 tháng 7 2019

ò, mình hiểu cách làm của bạn rồi, nhưng mà mình nghĩ chỗ câu a), câu b) bạn giải chỗ dấu ''='' thứ 3, sau khi nhận dạng đó là \(\sqrt{A^2}=|A|\), thì bạn phải bằng ra trị căn A, rồi nếu đó là phép cộng thì viết thẳng ra,còn nếu phép trừ thì phải xét xem là A nhỏ hơn 0 thì trị A= - A, còn nếu lớn hơn hoặc bằng 0 thì bằng chính nó,  đồng ý với bạn là ngoài là dấu trừ nên để trong ngoặc nhưng làm như vậy thì gọi là bỏ bước nếu bạn là hsg thì mình không có ý kiến nhưng mà bạn bỏ cái bước trị tuyệt dối nhưng lại không bỏ bước đặt dấu ngoặc, làm vậy cũng đúng nếu bạn không vững quy tắc dấu, nhưng mà cái bước trị tuyệt đối quan trọng hơn. Mình nghĩ vậy!

a: \(=-6\sqrt{b}-\dfrac{1}{3}\cdot3\sqrt{3b}+\dfrac{1}{5}\cdot5\sqrt{6b}\)

\(=-6\sqrt{b}-\sqrt{3}\cdot\sqrt{b}+\sqrt{6}\cdot\sqrt{b}\)

\(=\sqrt{b}\left(-6-\sqrt{3}+\sqrt{6}\right)\)

c: \(=\sqrt{\left(5+2\sqrt{6}\right)^2}+\sqrt{\left(5-2\sqrt{6}\right)^2}\)

\(=5+2\sqrt{6}+5-2\sqrt{6}=10\)

d: \(A=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)

e: \(B=\sqrt{6+2\sqrt{5-2\sqrt{3}-1}}\)

\(=\sqrt{6+2\cdot\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)

9 tháng 9 2016

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)

 

20 tháng 6 2016

a)A= \(\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\)=\(\sqrt{6+2\sqrt{3}+2}\)

=> A2=8+2\(\sqrt{3}\)

B=\(\sqrt{3}+1\)=> B2=10+2\(\sqrt{3}\)

=>A>B

 

23 tháng 7 2018

Cái này giải căn từ phải qua trái, tức là giải từ căn nhỏ đến căn lớn.

Ngại làm quá =))). Thôi làm cho 1 ý bạn tự suy ra nhé.

\(a.\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)

\(=\sqrt{6+2\sqrt{5-\sqrt{12+2.\sqrt{12}.1+1}}}\)

\(=\sqrt{6+2\sqrt{5-\left|\sqrt{12}+1\right|}}\)

\(=\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\)

\(=\sqrt{6+2\sqrt{4-\sqrt{12}}}\)

\(=\sqrt{6+2\left|\sqrt{3}-1\right|}\)

\(=\sqrt{6+2\sqrt{3}-2}\)

\(=\sqrt{2\sqrt{3}+4}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

23 tháng 7 2018

a)\(\sqrt{6+2\sqrt{5-\sqrt{1+12+4\sqrt{3}}}}=\sqrt{6+2\sqrt{5-1-2\sqrt{3}}}=\sqrt{6+2\sqrt{3}-2}=\sqrt{1+3+2\sqrt{3}}=1+\sqrt{3}\)

b)\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20+9-4\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

=\(\sqrt{\sqrt{5}-\sqrt{5+1-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)

mk chỉ biết làm đến đấy thôi

26 tháng 6 2017

3 bài đầu dễ tự làm nhé.

Bài 4:

\(B=\dfrac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)

\(=\dfrac{\sqrt{\left(1-\sqrt{2}\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\dfrac{\sqrt{\left(1+\sqrt{2}\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}\)

\(=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}-\dfrac{1+\sqrt{2}}{3+2\sqrt{2}}\)

\(=\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(1+\sqrt{2}\right)\left(3-2\sqrt{2}\right)\)

\(=3\sqrt{2}+4-3-2\sqrt{2}-\left(3-2\sqrt{2}+3\sqrt{2}-4\right)\)

\(=3\sqrt{2}+4-3-2\sqrt{2}-\left(-1+\sqrt{2}\right)\)

\(=3\sqrt{2}+4-3-2\sqrt{2}+1-\sqrt{2}\)

\(=0+2\)

\(=2\)

Vậy B là số tự nhiên.

26 tháng 6 2017

1.

a) nhân cả tử lẫn mẫu với 1+ \(\sqrt{2}-\sqrt{5}\)

b) tương tự a

2.

a) tách 29 = 20 + 9 là ra hằng đẳng thức, tiếp tục.