Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
@Ta chứng minh \(2,5<\sqrt{6+\sqrt{6+\sqrt{6+...}}}\)\(<3\) bằng quy nạp.
+Với n = 1, 2, 3 thì điều trên đúng.
+Giả sử điều trên đúng với n = k ( k≥1 ), tức là \(2,5<\sqrt{6+\sqrt{6+...}}\)\(<3\) với k dấu căn.
+Ta chứng minh điều đó đúng với n = k+1 tức là \(2,5<\sqrt{6+\sqrt{6+...}}\)\(<3\) với k+1 dấu căn
Thật vậy, ta có: \(2,5<\sqrt{6+\sqrt{6+...}}\text{(k dấu căn) }<3\)
\(\Rightarrow8,5<6+\sqrt{6+\sqrt{6+...}}\text{ (k dấu căn) }<9\)
\(\Rightarrow\sqrt{8,5}<\sqrt{6+\sqrt{6+\sqrt{6+...}}}\text{ (k+1 dấu căn)}<3\)
\(\Rightarrow2,5<\sqrt{6+\sqrt{6+..}}\left(k+1\text{ dấu căn}\right)<3\)
Vậy \(2,5<\sqrt{6+\sqrt{6+\sqrt{...}}}<3\)
@Chứng minh tương tự ta cũng có: \(1,5<\sqrt[3]{6+\sqrt[3]{6+\sqrt[3]{...}}}<2\)
Vậy \(2,5+1,5<\)\(\sqrt{...}+\sqrt[3]{...}<3+2\)
\(\Rightarrow4<\)\(\sqrt{...}+\sqrt[3]{....}<\)\(5\)
Vậy phần nguyên là 4.
Mih chỉ lm đc câu R thôi:
\(R=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5...}}}}}\)
\(\Rightarrow R^2=5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5...}}}}\)
\(\Rightarrow\left(R^2-5\right)^2=13+\sqrt{5+\sqrt{13+\sqrt{5...}}}\)
\(\Rightarrow R^4-10R^2+12=R\) (Vì R là lặp lại vô hạn cách viết nên nếu mũ chẵn lên thì R vẫn là R)
\(\Rightarrow\left(R-3\right)\left(R^3+3R^2-R-4\right)=0\)
Mà \(R^3+3R^2-R-4=\left(R+3\right)\left(R-1\right)\left(R+1\right)-1>0\forall R>\sqrt{5}\)
Nên ta dễ dàng suy ra đc R-3=0 => R=3
Ta có: \(A=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}>0\)
\(\Rightarrow A^2=6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}\)
\(\Rightarrow A^2=6+A\)\(\Rightarrow A^2-A-6=0\)
\(\Rightarrow A^2-2A+3A-6=0\)
\(\Rightarrow A\left(A-2\right)+3\left(A-2\right)=0\)
\(\Rightarrow\left(A+3\right)\left(A-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}A+3=0\\A-2=0\end{matrix}\right.\)\(\Rightarrow A=2>0\)
=> A2 = \(6+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+...}}}}\) = 6 + A
=> A2 - A - 6 = 0
<=> A2 - 3A + 2A - 6 = 0
<=> (A - 3). (A + 2) = 0
<=> A = 3 hoặc A = - 2
Vì A > 0 nên A = 3