Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
a) \(\sqrt{11+4\sqrt{7}}-\sqrt{11-4\sqrt{7}}\)
\(=\sqrt{7+4\sqrt{7}+4}-\sqrt{7-4\sqrt{7}+4}\)
\(=\sqrt{\left(\sqrt{7}+2\right)^2}-\sqrt{\left(\sqrt{7}-2\right)^2}\)
\(=\left|\sqrt{7}+2\right|-\left|\sqrt{7}-2\right|\)
\(=\sqrt{7}+2-\sqrt{7}+2=4\)
a) \(\sqrt{11+4\sqrt{7}}-\sqrt{11-4\sqrt{7}}=\sqrt{\left(2+\sqrt{7}\right)^2}-\sqrt{\left(\sqrt{7}-2\right)^2}=2+\sqrt{7}-\sqrt{7}+2=4\)
b) \(A=\sqrt{11-4\sqrt{6}}-\sqrt{11+4\sqrt{6}}\)
\(\Rightarrow A^2=11-4\sqrt{6}-2\sqrt{\left(11-4\sqrt{6}\right)\left(11+4\sqrt{6}\right)}+11+4\sqrt{6}\)
\(A^2=22-2\sqrt{121-96}\)
\(A^2=22-2\sqrt{25}=22-2.5=12\)
\(\Rightarrow A=-\sqrt{12}\)(Chú ý \(A< 0\))
a.
\(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\\ =\sqrt{5+2\cdot\sqrt{5}\cdot1+1}+\sqrt{5-2\cdot\sqrt{5}\cdot1+1}\\ =\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\\ =\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
b.
\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\\ =\sqrt{7-2\cdot\sqrt{7}\cdot1+1}-\sqrt{7+2\cdot\sqrt{7}\cdot1+1}\\ =\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\\ =\sqrt{7}-1-\sqrt{7}-1=-2\)
c.
\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\\ =\sqrt{9+2\cdot3\cdot\sqrt{2}+2}-\sqrt{9-2\cdot3\cdot\sqrt{2}+2}\\ =\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\\ =3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
d.
\(\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}\\ =\sqrt{2+2\cdot\sqrt{2}\cdot1+1}+\sqrt{4-2\cdot2\cdot\sqrt{2}+2}\\ =\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\\ =\sqrt{2}+1+2-\sqrt{2}=3\)
P/s: Bạn chịu khó để ý thì sẽ thấy toàn ra hằng đẳng thức số 1 và 2 thôi :v
a, phân tích vế trái ta được:
11+6\(\sqrt{2}\)=9+2.3.\(\sqrt{2}\)+2=(3+\(\sqrt{2}\))2\(\)=VP(dpcm)
b,phân tích vế trái ta được
\(\sqrt{11+6\sqrt{ }2}\)+\(\sqrt{11-6\sqrt{ }2}\)=|3+\(\sqrt{2}\)|+|3-\(\sqrt{2}\)|=6=VP(dpcm)
a,phân tích vế trái ta được
8-2\(\sqrt{7}\)=7-2\(\sqrt{7}\)+1=(\(\sqrt{7}\)-1)2
câu b sai đề nha
1) \(\left(\sqrt{6}-\sqrt{8}\right)\left(\sqrt{6}+\sqrt{8}\right)\)
\(=\left(\sqrt{6}\right)^2-\left(\sqrt{8}\right)^2\)
\(=6-8=-2\)
2) \(\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
\(=3^2-\left(\sqrt{5}\right)^2\)
\(=9-5=4\)
3) \(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
\(=\sqrt{4-4\sqrt{3}+3}+\sqrt{4+4\sqrt{3}+3}\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
4) Xét ta thấy: \(2\sqrt{3}=\sqrt{12}< \sqrt{16}=4\)
=> \(2\sqrt{3}-4< 0\) => vô lý không tm đk căn
1) Cách 1 :
\(M=\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}\)
\(M=\sqrt{9-6\sqrt{2}+2}+\sqrt{9+6\sqrt{2}+2}\)
\(M=\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(3+\sqrt{2}\right)^2}\)
\(M=\left|3-\sqrt{2}\right|+\left|3+\sqrt{2}\right|\)
\(M=3-\sqrt{2}+3+\sqrt{2}=6\)
Cách 2 :
\(M=\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}\)
\(\Rightarrow M^2=11-6\sqrt{2}+2\sqrt{11-6\sqrt{2}}.\sqrt{11+6\sqrt{2}}+11+6\sqrt{2}\)
\(\Leftrightarrow M^2=22+2.7=36\)
\(\Leftrightarrow M=6\left(\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}>0\right)\)
2)
\(A=53-20\sqrt{4+\sqrt{9-4\sqrt{2}}}\)
\(\Leftrightarrow A=53-20\sqrt{4+\sqrt{8-4\sqrt{2}+1}}\)
\(\Leftrightarrow A=53-20\sqrt{4+\sqrt{\left(2\sqrt{2}-1\right)^2}}\)
\(\Leftrightarrow A=53-20\sqrt{4+\left|2\sqrt{2}-1\right|}\)
\(\Leftrightarrow A=53-20\sqrt{4+2\sqrt{2}-1}\)
\(\Leftrightarrow A=53-20\sqrt{3+2\sqrt{2}}\)
\(\Leftrightarrow A=53-20\sqrt{2+2\sqrt{2}+1}\)
\(\Leftrightarrow A=53-20\left(\sqrt{2}+1\right)\)
\(\Leftrightarrow A=53-20\sqrt{2}-20=33-20\sqrt{2}\)
3)
\(M=\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\)
\(M=\sqrt{3-\sqrt{5}}.\left(3\sqrt{10}-3\sqrt{2}+5\sqrt{2}-\sqrt{10}\right)\)
\(M=\sqrt{3-\sqrt{5}}\left(2\sqrt{10}+2\sqrt{2}\right)\)
\(M=2\sqrt{2}.\sqrt{3-\sqrt{5}}\left(\sqrt{5}+1\right)\)
\(\Rightarrow M^2=8.\left(3-\sqrt{5}\right).\left(5+2\sqrt{5}+1\right)\)
\(\Leftrightarrow M^2=\left(24-8\sqrt{5}\right)\left(6+2\sqrt{5}\right)\)
\(\Leftrightarrow M^2=144+48\sqrt{5}-48\sqrt{5}-80\)
\(\Leftrightarrow M^2=64\Leftrightarrow M=8\left(\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right).\left(\sqrt{10}-\sqrt{2}\right)>0\right)\)
\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=|2+\sqrt{3}|-|2-\sqrt{3}|\)
\(=2+\sqrt{3}-2+\sqrt{3}\)
\(=2\sqrt{3}\)
\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=|3+\sqrt{2}|-|3-\sqrt{2}|\)
\(=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)
\(=|3+2\sqrt{2}|+|3-2\sqrt{2}|\)
\(=3+2\sqrt{2}+3-2\sqrt{2}\)
\(=6\)
\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=|2+\sqrt{5}|-|2-\sqrt{5}|\)
\(=2+\sqrt{5}-\sqrt{5}+2\)
\(=4\)
\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}\)
\(=|1+\sqrt{5}|-|1-\sqrt{5}|\)
\(=1+\sqrt{5}-\sqrt{5}+1\)
\(=2\)
\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(A=\sqrt{3}+2+2-\sqrt{3}\)
A = 2 + 2
A = 4
\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(B=\sqrt{2}+3+3-\sqrt{2}\)
B = 3 + 3
B = 6
\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(C=3+2\sqrt{2}+3-2\sqrt{2}\)
C = 3 + 3
C = 6
\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(D=\sqrt{5}+2-\sqrt{5}+2\)
D = 2 + 2
D = 4
\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(E=\sqrt{5}+1-\sqrt{5}+1\)
E = 1 + 1
E = 2
a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}\)
\(=\frac{\sqrt{2\left(4-\sqrt{7}\right)}-\sqrt{2\left(4+\sqrt{7}\right)}+2}{\sqrt{2}}\)
\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}+2}{\sqrt{2}}\)
\(=\frac{\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}+2}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}+2}{\sqrt{2}}\)
\(=\frac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|+2}{\sqrt{2}}=\frac{\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)+2}{\sqrt{2}}\)
\(=\frac{\sqrt{7}-1-\sqrt{7}-1+2}{\sqrt{2}}=\frac{0}{\sqrt{2}}=0\)
b) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)
\(=\frac{\sqrt{2\left(6+\sqrt{11}\right)}-\sqrt{2\left(6-\sqrt{11}\right)}+3.2}{\sqrt{2}}\)
\(=\frac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}+6}{\sqrt{2}}\)
\(=\frac{\sqrt{11+2\sqrt{11}+1}-\sqrt{11-2\sqrt{11}+1}+6}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{11}+1\right)^2}-\sqrt{\left(\sqrt{11}-1\right)^2}+6}{\sqrt{2}}\)
\(=\frac{\left|\sqrt{11}+1\right|-\left|\sqrt{11}-1\right|+6}{\sqrt{2}}\)
\(=\frac{\left(\sqrt{11}+1\right)-\left(\sqrt{11}-1\right)+6}{\sqrt{2}}\)
\(=\frac{\sqrt{11}+1-\sqrt{11}+1+6}{\sqrt{2}}=\frac{8}{\sqrt{2}}=4\sqrt{2}\)
\(A=\sqrt{6-\sqrt{11}}-\sqrt{6+\sqrt{11}}=\dfrac{\sqrt{2}\left(\sqrt{6-\sqrt{11}}-\sqrt{6+\sqrt{11}}\right)}{\sqrt{2}}=\dfrac{\sqrt{12-2\sqrt{11}}-\sqrt{12+2\sqrt{11}}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{11}-1\right)^2}-\sqrt{\left(\sqrt{11}+1\right)^2}}{\sqrt{2}}=\dfrac{\sqrt{11}-1-\sqrt{11}-1}{\sqrt{2}}=\dfrac{-2}{\sqrt{2}}=-\sqrt{2}\)
\(A=\sqrt{\left(\sqrt{\dfrac{11}{2}}-\sqrt{\dfrac{1}{2}}\right)^2}-\sqrt{\left(\dfrac{11}{2}+\sqrt{\dfrac{1}{2}}\right)^2}\\ A=\sqrt{\dfrac{11}{2}}-\sqrt{\dfrac{1}{2}}-\sqrt{\dfrac{11}{2}}-\sqrt{\dfrac{1}{2}}\\ A=-2\sqrt{\dfrac{1}{2}}=-\dfrac{2\sqrt{2}}{2}=-\sqrt{2}\)