K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2020

A=sin240+cos210+2sin40cos10-cos240-sin210-2sin10cos40+cos(90+50)

A=(sin240-cos240)+(cos210-sin210)+2(sin40cos10-cos40sin10)-sin50

A=(sin40-cos40)(sin40+cos40)-(sin10-cos10)(sin10+cos10)+1-sin50

A=\(\sqrt{2}\) sin(40-\(\frac{\pi}{4}\))\(\sqrt{2}\) cos(40-\(\frac{\pi}{4}\))-\(\sqrt{2}\)sin(10-\(\frac{\pi}{4}\))\(\sqrt{2}\) cos(10-\(\frac{\pi}{4}\))+1-sin50

A=-2sin5cos5+2sin35cos35+1-sin50

A= - sin10+sin70+1-sin50

A= 2cos40sin30-sin(90-40)+1

A=cos40-cos40+1 =1

Câu 1: Chứng minha) \(\dfrac{cosx+sin2x}{1+sinx-cos2x}=cotx\) b) \(\dfrac{1+sin3x-cos6x}{cos3x+sin6x}=tan3x\)Câu 2: Tínha) cos10.cos50.cos70b) sin10.sin50.sin70c) cos20.cos40.cos60.cos60d) sin20.sin40.sin60.sin80Câu 3: Trong mặt phẳng Oxy, cho tam giác ABC có điểm A(-4;2) và đường cao CH : x-y-1=0; trung điểm của BC là I(-2;3). Tìm tọa độ đỉnh BCâu 4: Trong mặt phẳng Oxy, cho tam giác ABC có điểm B(-1;2) và đường cao AH : x+y-2=0; trung điểm...
Đọc tiếp

Câu 1: Chứng minh

a) \(\dfrac{cosx+sin2x}{1+sinx-cos2x}=cotx\)

 

b) \(\dfrac{1+sin3x-cos6x}{cos3x+sin6x}=tan3x\)

Câu 2: Tính

a) cos10.cos50.cos70

b) sin10.sin50.sin70

c) cos20.cos40.cos60.cos60

d) sin20.sin40.sin60.sin80

Câu 3: Trong mặt phẳng Oxy, cho tam giác ABC có điểm A(-4;2) và đường cao CH : x-y-1=0; trung điểm của BC là I(-2;3). Tìm tọa độ đỉnh B

Câu 4: Trong mặt phẳng Oxy, cho tam giác ABC có điểm B(-1;2) và đường cao AH : x+y-2=0; trung điểm của AC là I(-2;1). Viết phương trình cạnh AC

Câu 5: Cho các số dương x,y thỏa mãn x+ y = \(\dfrac{1}{2}\). Tìm giá trị nhỏ nhất của

P=\(\dfrac{1}{x}+\dfrac{1}{y}\)

Câu 6: Cho số thực x thỏa mãn x>4. Tìm giá trị nhỏ nhất của \(Q=9x+\dfrac{1}{x-4}\)

Câu 7: Cho số dương x thỏa mãn 0 ≤ x ≤ 7. Tìm giá trị lớn nhất của \(Q=9x\left(7-x\right)\)

Câu 8: Trong mặt phẳng Oxy cho đường tròn (C): x2 + y2 - 2x + 2y - 7 = 0 và đường thẳng d: x + y + 1 = 0. Viết phương trình đường thẳng △ song song với đường thẳng d và cắt đường tròn (C) theo dây cung có độ dài bằng 2.

Câu 9: Trong mặt phẳng Oxy cho điểm A(-3;4) và đường thẳng d: 3x + 4y + 18 = 0. Viết phương trình đường tròn tâm A và cắt đường thẳng d theo dây cung có độ dài bằng 24

Câu 10: Trong mặt phẳng Oxy cho đường tròn (C): x2 + y2 - 2x + 2y - 7 =0 và đường thẳng d: x + y + 1=0. Viết phương trình đường thẳng △ song song với đường thẳng d và cắt đường tròn (C) theo dây cung AB sao cho tam giác ABI đều (I là tâm của (C))

 

Giúp em với ạ <3 Được câu nào hay câu đó :( tsau em thi rùi

1
20 tháng 5 2022

Câu 5. Cho x,y dương thỏa mãn \(x+y=\dfrac{1}{2}\).Tìm giá trị nhỏ nhất của 

\(P=\dfrac{1}{x}+\dfrac{1}{y}\)

Giải:

\(P=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{\dfrac{1}{2}}{xy}=\dfrac{2}{xy}\)

--> P nhỏ nhất khi \(xy\) lớn nhất

Ta có:

\(x^2+y^2\ge2xy\) ( BĐT AM-GM )

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow1\ge4xy\)

\(\Leftrightarrow xy\le\dfrac{1}{4}\)

\(\Rightarrow P\ge2:\dfrac{1}{4}=8\)

Vậy \(Min_P=8\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{4}\)

 

 

20 tháng 5 2022

ấy nhầm bài :v

23 tháng 11 2018

S= (cos100+cos1700) + (cos300+cos1500) + (cos500+cos1300)+(cos700+1100)+cos900

=0

13 tháng 4 2016

a) Ta có: sin 1050 = sin(1800-1050)                 =>   sin 1050= sin 750

b)          cos1700= -cos(1800-1700)                 =>   cos1700 = -cos100

c)          cos1220 = -cos(1800-1220)                =>    cos1220  = -cos580

NV
6 tháng 4 2019

\(B=sin20-sin80+sin40\)

\(B=-2cos50.sin30+sin40\)

\(B=-cos50+sin40\)

\(B=-cos\left(90-40\right)+sin50\)

\(B=-sin40+sin40=0\)

\(C=sin160-sin100+sin\left(180-40\right)\)

\(C=2cos130.sin30+sin40\)

\(C=cos130+sin40\)

\(C=cos\left(90+40\right)+sin40\)

\(C=-sin40+sin40=0\)

8 tháng 4 2019
https://i.imgur.com/FV6HjSM.png
6 tháng 4 2019

C= cos80o + cos40o + cos(π - 20o)

= 2cos\(\frac{80^o+40^o}{2}\).cos\(\frac{80^o-40^o}{2}\) - cos20o

= 2.0,5.cos20o - cos20o

=0

Vaayj C=0

6 tháng 4 2019

dấu = thứ 2 là sao v bn mình chưa hỉu lắm

NV
4 tháng 4 2019

\(A=cos10+cos170+cos40+cos140+cos70+cos110\)

\(A=cos10+cos\left(180-10\right)+cos40+cos\left(180-40\right)+cos70+cos\left(180-70\right)\)

\(A=cos10-cos10+cos40-cos40+cos70-cos70\)

\(A=0\)

\(B=sin5+sin355+sin10+sin350+...+sin175+sin185+sin360\)

\(B=sin5+sin\left(360-5\right)+sin10+sin\left(360-10\right)+...+sin175+sin\left(360-175\right)+sin360\)

\(B=sin5-sin5+sin10-sin10+...+sin175-sin175+sin360\)

\(B=sin360=0\)

\(C=cos^22+cos^288+cos^24+cos^284+...+cos^244+cos^246\)

\(C=cos^22+cos^2\left(90-2\right)+cos^24+cos^2\left(90-4\right)+...+cos^244+cos^2\left(90-44\right)\)

\(C=cos^22+sin^22+cos^24+sin^24+...+cos^244+sin^244\)

\(C=1+1+...+1\) (có \(\frac{44-2}{2}+1=22\) số 1)

\(\Rightarrow C=22\)

14 tháng 4 2018

đề bài tính "A" :

\(\left\{{}\begin{matrix}\dfrac{x}{x^2-x+1}=a\\A=\dfrac{x^2}{x^4+x^2+1}\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\\\left(2\right)\end{matrix}\)

\(x=0;a=0;A=0\)

\(x\ne0;\left(1\right)\Leftrightarrow\dfrac{1}{a}=\dfrac{x^2-x+1}{x}=x+\dfrac{1}{x}-1\)

\(\left(2\right)\Leftrightarrow\dfrac{1}{A}=\dfrac{x^4+x^2+1}{x^2}=x^2+\dfrac{1}{x^2}+1=\left(x+\dfrac{1}{x}\right)^2-1=\left(x+\dfrac{1}{x}-1\right)\left(x+\dfrac{1}{x}+1\right)\)

\(\dfrac{1}{A}=\dfrac{1}{a}\left(\dfrac{1}{a}+2\right)=\dfrac{2a+1}{a^2}\)

\(a=\dfrac{-1}{2}\Leftrightarrow\left(x^2+x+1\right)=0;voN_0\)

a khác -1/2 mọi x

\(A=\dfrac{a^2}{2a+1}\)

17 tháng 4 2021

Ta có:

\(A=\dfrac{\cos10^0-\sqrt{3}\sin10^0}{\sin10^0\cos10^0}\)

\(=\dfrac{4\left(\dfrac{1}{2}cos10^0-\dfrac{\sqrt{3}}{2}sin10^0\right)}{2sin10^0cos10^0}=\dfrac{4\left(s\text{in3}0^0cos10^0-cos30^0s\text{in}10^0\right)}{sin20^0}=\dfrac{4sin\left(30^0-10^0\right)}{s\text{in2}0^0}=4\)