Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{3^6.45^4-15^{13}.5^{-9}}{27^4.25^3+45^6}=\frac{3^6.\left(3^2.5\right)^4-\left(3.5\right)^{13}.5^{-9}}{\left(3^3\right)^4.\left(5^2\right)^3+\left(3^2.5\right)^6}=\frac{3^6.3^8.5^4-3^{13}.5^{13}.5^{-9}}{3^{12}.5^6+3^{12}.5^6}\)
\(=\frac{3^{14}.5^4-3^{13}.5^4}{3^{12}.5^6+3^{12}.5^6}=\frac{3^{13}.5^4.\left(3-1\right)}{3^{12}.5^6\left(1+1\right)}=\frac{3^{13}.5^4}{3^{12}.5^6}=\frac{3}{5^2}=\frac{3}{25}\)
b)\(\frac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}=\frac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.2^3.3.5}{-\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{-2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{-2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{-\left(2^{12}.3^{12}+2^{11}.3^{11}\right)}=\frac{2^{12}.3^{10}\left(1+5\right)}{-\left[2^{11}.3^{11}\left(2.3+1\right)\right]}=\frac{2.6}{-\left(3.7\right)}=\frac{4}{-7}\)
a) \(-\frac{4}{7}+\frac{\left(-5\right).\left(-39\right)}{13.25}+\frac{\left(-1\right).6}{42.\left(-5\right)}=-\frac{4}{7}+\frac{\left(-1\right).3}{1.5}+\frac{\left(-1\right).1}{7.\left(-5\right)}=-\frac{4}{7}+\frac{3}{5}+\frac{1}{35}\)
\(=-\frac{20}{35}+\frac{21}{35}+\frac{1}{35}=\frac{2}{35}\)
b) \(=\frac{2}{9}.\left[-\frac{4}{45}:\left(\frac{3}{15}-\frac{2}{15}\right)+1\frac{2}{3}\right]+\frac{5}{27}=\frac{2}{9}.\left[-\frac{4}{45}:\frac{1}{15}+1\frac{2}{3}\right]+\frac{5}{27}\)
\(=\frac{2}{9}.\left[\frac{\left(-4\right).15}{45.1}+1\frac{2}{3}\right]+\frac{5}{27}==\frac{2}{9}.\left[\frac{\left(-4\right).1}{3.1}+1\frac{2}{3}\right]+\frac{5}{27}\)
\(==\frac{2}{9}.\left[-\frac{4}{3}+\frac{5}{3}\right]+\frac{5}{27}=\frac{2.1}{9.3}+\frac{5}{27}=\frac{2}{27}+\frac{5}{27}=\frac{7}{27}\)
\(\frac{3^6.45^4-15^{13}:5^9}{27^4.25^3+45^6}\)=\(\frac{3^{14}.5^4-3^{13}.5^4}{3^{12}.5^6+3^{12}.5^6}=\frac{3^{13}.5^4\left(3-1\right)}{3^{12}.5^6\left(1+1\right)}\)=\(\frac{3}{25}\)
\(\frac{3^6.45^5-15^{13}.5^{-9}}{27^4.25^3+45^6}=\frac{3^6.\left(3^2.5\right)^5-\left(3.5\right)^{13}.5^{-9}}{\left(3^3\right)^4.\left(5^2\right)^3+\left(3^2.5\right)^6}=\frac{3^{16}.5^5-3^{13}.5^4}{3^{12}.5^6+3^{12}.5^6}\)
\(\frac{3^{13}.5^4\left(3^3.5-1\right)}{2.3^{12}.5^6}=\frac{3.44}{2.5^2}=\frac{3.22}{5^2}=\frac{66}{25}\)