Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2+5}=\dfrac{-7}{7}=-1\)
Do đó: x=-2; y=5
Bài 2:
Ta có: \(\left(-\dfrac{1}{3}\right)^3\cdot x=\dfrac{1}{81}\)
\(\Leftrightarrow x=\dfrac{1}{81}:\dfrac{-1}{27}=\dfrac{-1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
bn ns j v bn ? mk đăng bài lên để hỏi mn chứ bn đừng cmt thế nha
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{18.19.20}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{4}-\dfrac{1}{2.19.20}< \dfrac{1}{4}\)
Cái B TT nhé
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\\ =1-\dfrac{1}{n}< 1\)
D TT
E mk thấy nó ss ớ
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a)\dfrac{-5}{21}-\dfrac{1}{3}+3\dfrac{1}{2}.\left(\dfrac{-2}{3}\right)^3\)
\(=\dfrac{-5}{21}+\dfrac{-7}{21}+\dfrac{7}{2}.\dfrac{-8}{27}\)
\(=-\dfrac{4}{7}+\dfrac{-28}{27}\)
\(=\dfrac{-108}{189}+\dfrac{-196}{189}\)
\(=-\dfrac{304}{189}\)
\(b)-2\dfrac{1}{3}+\left(\dfrac{3}{8}-\dfrac{3}{4}\right)^3:\dfrac{5}{9}-\dfrac{1}{2}\)
\(=-\dfrac{7}{3}+\left(\dfrac{3}{8}-\dfrac{6}{8}\right)^3.\dfrac{9}{5}-\dfrac{1}{2}\)
\(=-\dfrac{7}{3}+\left(-\dfrac{3}{8}\right)^3.\dfrac{9}{5}-\dfrac{1}{2}\)
\(=-\dfrac{7}{3}+\dfrac{-27}{512}.\dfrac{9}{5}-\dfrac{1}{2}\)
\(=-\dfrac{7}{3}+\dfrac{-243}{2560}-\dfrac{1}{2}\)
\(=\dfrac{-17920}{7680}+\dfrac{-729}{7680}+\dfrac{-3840}{7680}\)
\(=\dfrac{-22489}{7680}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(A=\dfrac{10^{15}+1}{10^6+1}>1\);\(B=\dfrac{10^6+1}{10^{17}+1}< 1\)
⇒\(A>B\)
b, \(D=\dfrac{2^{2007}+3}{2^{2006}-1}=\dfrac{2^{2008}+6}{2^{2007}-2}\)
Ta có : \(\dfrac{2^{2008}-3}{2^{2007}-1}< \dfrac{2^{2008}-3}{2^{2007}-2}< \dfrac{2^{2008}+6}{2^{2007}-2}\)
⇒ \(C< D\)
c, \(M=\dfrac{3}{8^3}+\dfrac{7}{8^4}=\dfrac{3}{8^3}+\dfrac{3}{8^4}+\dfrac{4}{8^4}\)
\(N=\dfrac{7}{8^3}+\dfrac{3}{8^4}=\dfrac{3}{8^3}+\dfrac{4}{8^3}+\dfrac{3}{8^4}\)
Vì \(\dfrac{4}{8^4}< \dfrac{4}{8^3}\)
⇒ \(M< N\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\dfrac{-1}{3}\cdot2\cdot\dfrac{-1}{3}=\left(\dfrac{-1}{3}\right)^2\cdot2=\dfrac{1}{9}\cdot2=\dfrac{2}{9}\)
c) \(\dfrac{8^4}{4^4}=\left(\dfrac{8}{4}\right)^4=2^4=16\)
d) \(\dfrac{90^3}{15^3}=\left(\dfrac{90}{15}\right)^3=6^3=216\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\Leftrightarrow-\dfrac{23}{5}\cdot\dfrac{50}{23}< x< \dfrac{-13}{5}:\dfrac{21}{15}=\dfrac{-13}{5}\cdot\dfrac{5}{7}=\dfrac{-13}{7}\)
=>-10<x<-13/7
hay \(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2\right\}\)
b: \(\Leftrightarrow-\dfrac{13}{3}\cdot\dfrac{1}{3}< x< \dfrac{-2}{3}\cdot\dfrac{4-3-9}{12}\)
\(\Leftrightarrow-\dfrac{13}{9}< x< \dfrac{4}{9}\)
mà x là số nguyên
nên \(x\in\left\{-1;0\right\}\)
\(\dfrac{90^3}{15^3}=\left(\dfrac{90}{15}\right)^3=6^3=216\)
mấy cái kia tương tự mình sẽ giải cho bạn cái cuối cùng:
\(\dfrac{\left(-\dfrac{1}{2}\right)^n}{\left(-\dfrac{1}{2}\right)^{n-1}}=\dfrac{\left(-\dfrac{1}{2}\right)^{n-1}}{\left(-\dfrac{1}{2}\right)^{n-1}}.\left(-\dfrac{1}{2}\right)=1.\left(-\dfrac{1}{2}\right)=-\dfrac{1}{2}\)