\(\dfrac{2^{19}\cdot27^3-15\cdot\left(-4\right)^9\cdot9^4}{6^9\cdot2^{10}+\left(-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

\(A=\dfrac{2^{19}.27^3-15.\left(-4\right)^9.9^4}{6^9.2^{10}+\left(-12\right)^{10}}\)

\(A=\dfrac{2^{19}.3^9+3.5.2^{18}.3^{12}}{2^9.3^9.2^{10}+3^{10}.2^{20}}\)

\(A=\dfrac{2^{18}.3^9\left(2+3.5.3^3\right)}{2^{19}.3^9\left(1+3.2\right)}=\dfrac{2+5.3^4}{2.7}=\dfrac{407}{14}\)

Chúc bạn học tốt!!!

\(=\dfrac{2^{19}\cdot3^9+3\cdot5\cdot2^{18}\cdot3^8}{2^9\cdot2^{10}\cdot3^9+2^{20}\cdot3^{10}}\)

\(=\dfrac{2^{19}\cdot3^9+3^9\cdot2^{18}\cdot5}{2^{19}\cdot3^9+2^{20}\cdot3^{10}}\)

\(=\dfrac{2^{18}\cdot3^9\left(2+5\right)}{2^{19}\cdot3^9\cdot\left(1+2\cdot3\right)}=\dfrac{1}{2}\)

22 tháng 1 2019

\(A=\frac{2^{19}.\left(2^3\right)^3+15.\left(2^2\right)^9.\left(3^2\right)^4}{2^9.3^9.2^{10}+\left(2^2.3\right)^{10}}=\frac{2^{19}.3^9+15.2^{18}.3^8}{2^{19}.3^9+2^{20}.3^{10}}=\frac{2^{18}.3^8.\left(2.3+15\right)}{2^{19}.3^9.\left(1+2.3\right)}\)

\(=\frac{2^{18}.3^8.21}{2^{19}.3^9.7}=\frac{21}{2.3.7}=\frac{1}{2}\)

22 tháng 1 2019

sao  lại ko có dấu âm vậy bn ??????????????

a: \(=\dfrac{2^{19}\cdot3^9+3^9\cdot5\cdot2^{18}}{2^{19}\cdot3^9+2^{10}}\)

\(=\dfrac{3^9\cdot2^{18}\cdot\left(2+5\right)}{2^{10}\cdot\left(2^9\cdot3^9+1\right)}=\dfrac{3^9\cdot7\cdot2^8}{6^9+1}\)

b: \(=\dfrac{\dfrac{-1}{8}-\dfrac{27}{64}\cdot4}{-2+\dfrac{9}{16}-\dfrac{3}{8}}=\dfrac{-29}{16}:\dfrac{-29}{16}=1\)

13 tháng 11 2015

bài này không khó. Nhưng đánh máy để giải cho bạn thì thực sự khó

25 tháng 2 2018

\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)

\(=\frac{2^{19}.\left(3^3\right)^3+15.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)

\(=\frac{2^{19}.3^9+15.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}\)

\(=\frac{2^{19}.3^9+15.2^{18}.3^8}{2^{19}.3^9+2^{20}.3^{10}}\)

\(=\frac{2^{18}.3^8\left(2.3+15\right)}{2^{19}.3^9\left(1+2.3\right)}\)

\(=\frac{6+15}{2.3\left(1+6\right)}\)

\(=\frac{21}{6.7}\)

\(=\frac{21}{42}\)

\(=\frac{1}{2}\)