\(\dfrac{1+4x}{1+\sqrt{1+4x}}+\dfrac{1-4x}{1-\sqrt{1-4x}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2018

Cho tam giác ABC vuông tại A, AB<AC. Trung tuyến AM, ˆACB=x,ˆAMB=yACB^=x,AMB^=yChứng minh (sin x +cos x)2=1+sin y

MÌNH CẦN GẤP MỌI NGƯỜI GIÚP MÌNH NHA

4 tháng 9 2018

Cho tam giác ABC vuông tại A, AB<AC. Trung tuyến AM, ˆACB=x,ˆAMB=yACB^=x,AMB^=yChứng minh (sin x +cos x)2=1+sin y

MÌNH CẦN GẤP MỌI NGƯỜI GIÚP MÌNH NHA

4 tháng 9 2018

Quy đồng lên ta được:

A=\(\sqrt{1+4X}\) - \(\sqrt{1-4X}\)

31 tháng 7 2017

\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

<=> x + 1 = 16

<=> x = 15 (nhận)

~ ~ ~

\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow\sqrt{x+5}=2\)

<=> x + 5 = 4

<=> x = - 1 (nhận)

31 tháng 7 2017

tính tan40°×tan45°×tan50°
#Help me -.-

2 tháng 6 2017

ta có x=1 , thế vào f(x)

2 tháng 6 2017

x=1/2

12 tháng 9 2017

\(A=\sqrt{2x-\sqrt{4x-1}}-\sqrt{2x+\sqrt{4x-1}}\)

\(A^2=\left(\sqrt{2x-\sqrt{4x-1}}-\sqrt{2x+\sqrt{4x-1}}\right)^2\)

\(A^2=2x-\sqrt{4x-1}+2x+\sqrt{4x-1}-2\sqrt{\left(2x-\sqrt{4x-1}\right)\left(2x+\sqrt{4x-1}\right)}\)

\(A^2=4x-2\sqrt{4x^2-4x+1}\)

\(A^2=4x-2\sqrt{\left(2x-1\right)^2}\)

\(A^2=4x-2\left|2x-1\right|\)

\(A^2=4x-2\left(1-2x\right)\) (vì\(\dfrac{1}{4}\le x\le\dfrac{1}{2}\)

\(A^2=8x-2\)

\(A=\sqrt{8x-2}\)

20 tháng 10 2018

a,

\(\sqrt{1-4x+4x^2}=5\\ \sqrt{\left(2x-1\right)^2}=5\\ \left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\\ \left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

20 tháng 10 2018

b,

\(\sqrt{4-5x}=12\\ 4-5x=144\\ x=-28\)

9 tháng 8 2017

2. ĐK: \(x\ge0\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x}\ge0\\b=\sqrt{x^2+4}\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=2a^2\\x^2+4=b^2\\3\sqrt{x^3+4x}=3ab\end{matrix}\right.\)

pt trên được viết lại thành

\(2a^2+b^2-3ab=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=\dfrac{1}{2}b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\sqrt{x^2+4}\\\sqrt{x}=\dfrac{1}{2}\sqrt{x^2+4}\end{matrix}\right.\)

Đến đây dễ rồi nhé ^^

13 tháng 8 2018

Tớ làm nốt nè :3

\(1b.3\sqrt{2}+4\sqrt{8}-\sqrt{18}=3\sqrt{2}+8\sqrt{2}-3\sqrt{2}=8\sqrt{2}\)

\(c.\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}=\dfrac{2-\sqrt{3}+2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=4\)

\(2a.\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow4x^2-4x+1=9\)

\(\Leftrightarrow4x^2+4x-8x-8=0\)

\(\Leftrightarrow4\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

\(b.\sqrt{4x-4}-\sqrt{9x-9}+5\sqrt{x-1}=7\left(x\ge1\right)\)

\(\Leftrightarrow2\sqrt{x-1}-3\sqrt{x-1}+5\sqrt{x-1}=7\)

\(\Leftrightarrow4\sqrt{x-1}=7\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{7}{4}\)

\(\Leftrightarrow x=\dfrac{65}{16}\)

c. Sai đề.

13 tháng 8 2018

Trưa hoặc tối t giúp c nhé

23 tháng 7 2018

\(ĐKXĐ:x>\dfrac{1}{4}\)

Áp dụng BĐT Cauchy cho các số dương , ta có :

\(\dfrac{x}{\sqrt{4x-1}}+\dfrac{\sqrt{4x-1}}{x}\ge2\sqrt{\dfrac{x}{\sqrt{4x-1}}.\dfrac{\sqrt{4x-1}}{x}}=2\)

\("="\Leftrightarrow\dfrac{x}{\sqrt{4x-1}}=\dfrac{\sqrt{4x-1}}{x}\Leftrightarrow x^2=4x-1\)

\(\Leftrightarrow x^2-4x+4-3=0\Leftrightarrow\left(x-2\right)^2-3=0\)

\(\Leftrightarrow\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2-\sqrt{3}\left(KTM\right)\\x=2+\sqrt{3}\left(TM\right)\end{matrix}\right.\)

KL.....

23 tháng 7 2018

\(\dfrac{x}{\sqrt{4x-1}}+\dfrac{\sqrt{4x-1}}{x}=2\Leftrightarrow\dfrac{x^2+4x-1}{x\sqrt{4x-1}}=2\)