Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{ab-bc}{\left(a+b\right)-\left(b+c\right)}=\frac{bc-ca}{\left(b+c\right)-\left(c+a\right)}=\frac{ab-ca}{\left(a+b\right)-\left(c+a\right)}\)
\(\Rightarrow a=b=c\)
\(\Rightarrow Q=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=1\)
a) Ta có: \(\frac{a}{3}=\frac{b}{4}.\)
=> \(\frac{a}{3}=\frac{b}{4}\) và \(a.b=48.\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\Rightarrow\left\{{}\begin{matrix}a=3k\\b=4k\end{matrix}\right.\)
Có: \(a.b=48\)
=> \(3k.4k=48\)
=> \(12k^2=48\)
=> \(k^2=48:12\)
=> \(k^2=4\)
=> \(k=\pm2.\)
TH1: \(k=2.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2.3=6\\b=2.4=8\end{matrix}\right.\)
TH2: \(k=-2.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(-2\right).3=-6\\b=\left(-2\right).4=-8\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(6;8\right),\left(-6;-8\right).\)
Chúc bạn học tốt!
a/\(\left(2-x\right)\times-3=\left(3x-1\right)\times4\)4
\(\Rightarrow-6+3x=12x-4\)
\(\Rightarrow-2=9x\)
\(\Rightarrow x=\frac{-2}{9}\)
bài b cx tương tự nha
ta có;\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)(THEO TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU)
\(\Rightarrowđpcm\)
Ta có: \(\frac{a}{c}=\frac{c}{b}\Rightarrow ab=c^2\)
Ta lại có:
\(\frac{a^2+c^2}{b^2+c^2}\Rightarrow\frac{a^2+ab}{b^2+ab}\Rightarrow\frac{a.\left(a+b\right)}{b.\left(a+b\right)}=\frac{a}{b}\)
Từ \(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a}{b}=\frac{a^2+c^2}{c^2+b^2}\)
Từ \(\frac{a}{b}=\frac{3}{5}\Rightarrow\frac{a}{3}=\frac{b}{5}\)
\(\frac{a}{3}=\frac{b}{5}=\frac{a-b}{3-5}\)
\(\frac{a}{3}=\frac{b}{5}=\frac{4}{-2}\)
\(\Rightarrow\frac{a}{3}=\frac{b}{5}=-2\)
\(a=-2.3=-6\)
\(b=-2.5=-10\)
\(-6.\left(-10\right)+\left|-6+\left(-10\right)\right|=-60+16=-44\)
k mình mình k lại
Từ a/b = 3/5 suy ra a/3=b/5
a/3=b/5=a-b/3-5=4/-2=-2
a = -2.3=-6
b=-2.5=-10
-6.(-10)-|-6+(-10)=-60+16=-44
k mình nha dấu / là dấu phân số đó còn dấu . là dấu nhân
1) Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Leftrightarrow\frac{a}{c}+1=\frac{b}{d}+1\)
\(\Leftrightarrow\frac{a+c}{c}=\frac{b+d}{d}\)(đpcm)
2) Để \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\) thì \(\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)
\(\Leftrightarrow\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a}{2c}=\frac{3b}{3d}\)
\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{a}{c}=\frac{b}{d}\)
\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
hay \(\frac{a}{b}=\frac{c}{d}\)(đpcm)
3) Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\frac{ab}{cd}=\frac{bk\cdot b}{dk\cdot d}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\)(1)
Ta có: \(\frac{a^2-b^2}{c^2-d^2}\)
\(=\frac{k^2\cdot b^2-b^2}{k^2\cdot d^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2) suy ra \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
4) Ta có: \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
nên \(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2\cdot k^2+b^2}{d^2\cdot k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(3)
Ta có: \(\left(\frac{a+b}{c+d}\right)^2\)
\(=\left(\frac{bk+b}{dk+d}\right)^2\)
\(=\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2\)
\(=\left(\frac{b}{d}\right)^2=\frac{b^2}{d^2}\)(4)
Từ (3) và (4) suy ra \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c=\frac{a}{\frac{2}{1}}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}\)
Áp dụng TC DTSBN ta có :
\(\frac{a}{\frac{2}{1}}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}=\frac{a-b}{\frac{2}{1}-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)
=> a = 60 ; b = 45 ; c = 40
đặt 2/a=3/b=k
=> a=2k, b=3k
=> a.b=2k.3k=6.k^2=96
=> k^2=16=> k=4 hoặc k=-4
nếu k=4
=> a=8
=> b=12
nếu k=-4
=> a=-8
=. b=-12
vậy: a=8, b=12 và a=-8, b=-12