K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

3 . 6 = 3 . 4 + 2 . 3 rùi đấy bạn, bn xét từng tích rùi sẽ thấy thôi.

31 tháng 5 2017

Sorano Yuuki !!! Mình hiểu rồi . Thì ra người ta tách sai =.= Cảm ơn nhé .

Đáng nhẽ là . Ta thấy 1.4=1.(2+2)

2.5 = 2.(2 + 3)
3.6 = 3.(2 + 4)
4.7 = 4.(2 + 5)
……

n(n + 3) = n(n + 1) + 2

1 tháng 5 2017

a) A =1+3+32+33+...+3100

   3A = 3 + 32+33+...+3101

   3A-A=( 3 + 32+33+...+3101)-(1+3+32+33+...+3100)

    2A = 3101-1

    A = \(\frac{3^{101}-1}{2}\)

    Thùy An làm sai rùi

2 tháng 8 2016

a) A=1+3+3^2+...+3^100

3A=3+3^2+....+3^101

3A-A=1+3^101

A=(1+3^101)/2

20 tháng 6 2016

C = 1/3 + 1/3^2 + 1/3^3 + ... =1/3^99

=> C = 1/3^99 = 1/(3^99) 

=> C < 1/2 (đpcm) 

20 tháng 6 2016

2A=2^101-2^100+2^98+...+2^3-2^2

3A = 2A + A

3A = 2^101 - 2 ( Cứ tính là ra , âm vs dương triệt tiêu )

A = (2^101-2) :3

B tăng tự 

18 tháng 4 2016

b) B = 2100 - 299 + 298 - 297 + ...+ 22 - 2

=> B x 2 = 2101 - 2100 + 299 -  298  + ...23 - 22

=> B x 2 + B = (2101 - 2100 + 299 -  298  + ...23 - 22 ) + (2100 - 299 + 298 - 297 + ...+ 22 - 2)

  <=>  B x 3 = 2101 - 2 = 2. ( 299 - 1)

=> B = \(\frac{2.\left(2^{99}-1\right)}{3}\)

Phần c) Làm tương tự Lấy C x 3 rồi + với C.

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

Lời giải:

a) \(A=1+3+3^2+3^3+...+3^{100}\)

\(\Rightarrow 3A=3+3^2+3^3+...+3^{101}\)

Trừ theo vế:
\(\Rightarrow 3A-A=(3+3^2+3^3+..+3^{101})-(1+3+3^2+...+3^{100})\)

\(2A=3^{101}-1\Rightarrow A=\frac{3^{101}-1}{2}\)

b) \(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(\Rightarrow 2B=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

Cộng theo vế:

\(\Rightarrow B+2B=2^{201}-2\)

\(\Rightarrow B=\frac{2^{101}-2}{3}\)

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

c) Ta có:

\(C=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)

\(\Rightarrow 3C=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)

Cộng theo vế:

\(C+3C=(3^{100}-3^{99}+3^{98}-....+3^2-3+1)+(3^{101}-3^{100}+3^{99}-....+3^3-3^2+3)\)

\(4C=3^{101}+1\Rightarrow C=\frac{3^{101}+1}{4}\)

a: \(3A=3+3^2+...+3^{101}\)

\(\Leftrightarrow2A=3^{101}-1\)

hay \(A=\dfrac{3^{101}-1}{2}\)

b: \(2B=2^{101}-2^{100}+...+2^3-2^2\)

\(\Leftrightarrow3B=2^{101}-2\)

hay \(B=\dfrac{2^{101}-2}{3}\)

c: \(3C=3^{101}-3^{100}+....+3^3-3^2+3\)

=>\(4C=3^{101}+1\)

hay \(C=\dfrac{3^{101}+1}{4}\)

22 tháng 2 2021

A 50

b 97

c 74

k cho mình nhé