K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

a)A=1+21+22+...+22012

2A=2+23+24+...+22013

  A=1+2+22+...+22012

A=22013-1

b)B=3-32+33-...-3100

3B=32-33+34-...-3101

4B=3-3100

B=(3-3100)/4

10 tháng 2 2019

phần b tương tự phần a nên em làm câu a và c thôi :

a, \(M=1-2+2^2-2^3+...+2^{2012}\)

\(2M=2-2^2+2^3-2^4+...+2^{2013}\)

\(3M=2^{2013}+1\)

\(M=\frac{2^{2013}+1}{3}\)

c, \(E=2^{100}-2^{99}-2^{98}-...-1\)

\(E=2^{100}-\left(2^{99}+2^{98}+...+1\right)\)

đặt \(A=2^{99}+2^{98}+...+1\)

\(2A=2^{100}+2^{98}+...+2\)

\(2A-A=2^{100}-1\) hay \(A=2^{100}-1\)

ta có : 

\(E=2^{100}-\left(2^{100}-1\right)\)

\(E=2^{100}-2^{100}+1=1\)

5 tháng 4 2017

Bạn kiểm tra lại đề nhé, hình như đề hơi có vấn đề

4 tháng 10 2015

3)7+7^2+7^3+...+7^100

=>7C-C=7^101-7

=>C=\(\frac{7^{101}-7}{6}\)

30 tháng 11 2014

a, = 600

b, = 13

c, = 23900

d, = 11

Bài này dễ lắm. Chỉ cần một quyển nháp là bạn giải ngon ơ! Đâu cần hỏi trên olm đâu

30 tháng 11 2014

bấm máy tính ngon hơn Mie Ngố  ak

3 tháng 11 2019

a, \(A=1+2+2^2+....+2^{56}\)

\(\Rightarrow2A=2\left(1+2+2^2+...+2^{56}\right)\)

\(\Rightarrow2A=2+2^2+2^3+....+2^{56}+2^{57}\)

\(\Rightarrow2A-A=2^{57}-1\)

\(\Rightarrow A=2^{57}-1\)

Câu b làm tương tự nha bạn

c, \(C=1-3+3^2-3^3+....+3^{98}-3^{99}\)

\(\Rightarrow3C=3-3^2+3^3-...-3^{98}+3^{99}-3^{100}\)

\(\Rightarrow3C+C=1-3^{100}\)

\(\Rightarrow C=\frac{1-3^{100}}{4}\)

3 tháng 11 2019

a)\(A=1+2+2^2+...+2^{56}\)

\(2A=2+2^2+2^3+2^4+...+2^{57}\)

\(2A-A=2+2^2+2^3+2^4+...+2^{57}-1-2-2^2-2^3-...-2^{56}\)

\(A=2^{57}-1\)

b)\(B=1+3^1+3^2+...+3^{100}\)

\(3B=3+3^2+3^3+...+3^{101}\)

\(3B-B=3+3^2+3^3+...+3^{101}-1-3-3^2-...-3^{100}\)

\(2B=3^{101}-1\)

\(B=\frac{3^{101}-1}{2}\)

c)\(C=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(3C=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)

\(3C+C=1-3^{100}\)

\(\Rightarrow4C=1-3^{100}\)

\(\Rightarrow C=\frac{1-3^{100}}{4}\)

27 tháng 9 2016

Ta có: 

\(A=1+3+3^2+...+3^{2012}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{2013}\)

\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{2013}\right)-\left(1+3+3^2+...+3^{2012}\right)\)

\(\Rightarrow2A=3^{2013}-1\)

\(\Rightarrow A=\left(3^{2013}-1\right):2\)

Do \(B=3^{2013}:2\)

\(\Rightarrow B-A=3^{2013}:2-\left(3^{2013}-1\right):2\)

\(\Rightarrow B-A=\left(3^{2013}-3^{2013}+1\right):2\)

\(\Rightarrow B-A=1:2=\frac{1}{2}\)

Vậy \(B-A=\frac{1}{2}\)