K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2018

a) (3+\(xy^2\))\(^2\)\(3^2\)+2*3*\(xy^2\)+\(\left(xy^2\right)\)\(^2\)

=9+6\(xy^2\)+\(x^2\)\(y^4\)

b) (a+\(b^2\))(a-\(b^2\))

=a(a-\(b^2\))+\(b^2\)(a-\(b^2\))

=a*a+a*-\(b^2\)+\(b^2\)*a+\(b^2\)*-\(b^2\)

=\(a^2\)-a\(b^2\)+\(b^2\)a-\(b^4\)

=\(a^2\)+(-a\(b^2\)+a\(b^2\))-\(b^4\)

=\(a^2\)-\(b^4\)

c)(2y-1)\(^2\)=(2y)\(^2\)-2*2y*1+1\(^{^2}\)

=4y\(^2\)-4y+1

d)(10-m\(^2\))\(^2\)=10\(^2\)-2*10*m\(^2\)+(m\(^2\))\(^2\)

=100-20m\(^2\)+m\(^4\)

câu e bạn tự làm nha tương tự như câu b 

chúc bạn học tốt

Bài 1:

a) \(\left(a-b^2\right)\left(a+b^2\right)=a^2-b^4\)

b) \(\left(a^2+2a-3\right)\left(a^2+2a+3\right)=\left(a^2+2a\right)^2-9\)

c) \(\left(a^2+2a+3\right)\left(a^2-2a-3\right)=a^2-\left(2a+3\right)^2\)

d) \(\left(a^2-2a+3\right)\left(a^2+2a+3\right)=9-\left(a^2-2a\right)^2\)

e) \(\left(-a^2-2a+3\right)\left(-a^2-2a+3\right)=\left(-a^2-2a+3\right)^2\)

g) \(\left(a^2+2a+3\right)\left(a^2-2a+3\right)=\left(a^2+3\right)^2-4a^2\)

f) \(\left(a^2+2a\right)\left(2a-a^2\right)=4a^2-a^4\)

Bài 2 :

a) \(\left(x+1\right)\left(x^2-x+1\right)=x^3+1\)

b) \(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)=x^2+xy+xz+yx+y^2+yz+zx+zy+z^2=x^2+2xy+2yz+2xz+y^2+z^2\)

c) \(\left(x-y+z\right)^2=\left(x-y+z\right)\left(x-y+z\right)=x^2-xy+xz-xy+y^2-yz+xz-yz+z^2=x^2+y^2+z^2-2xy+2xz-2yz\)d) \(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=\left(x-2y\right)^3\)

e) \(\left(x-y-z\right)^2=\left(x-y-z\right)\left(x-y-z\right)=x^2-xy-xz-xy+y^2+yz-xz+yz+z^2=x^2-2xy-2xz+2yz+y^2+z^2\)

21 tháng 6 2017

1) \(B=5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)+2\left(5-3x\right)^2\)

\(=5\left(4x^2-4x+1\right)+\left(4x-4\right)\cdot\left(x+3\right)+2\left(25-30x+9x^2\right)\)

\(=20x^2-20x+5+4x^2+12x-4x-12+50-60+18x^2\)

\(=42x^2-72x+43\)

2) \(C=\left(2a^2+2a+1\right)\left(2a^2-2a+1\right)-\left(2a+1\right)^2\)

\(=4a^4-4a^3+2a^2+4a^3-4a^2+2a+2a^2-2a+1-\left(4a^2+4a+1\right)\)

\(=4a^4+2a^2-4a^2+2a^2+1-4a^2-4a-1\)

\(=4a^4-4a^2-4a\)

3) Sky Sơn Tùng làm đúng rồi nhé.

4) \(E=\left(x^2-5x+1\right)^2+2\left(5x-1\right)\left(x^2-5x+1\right)\left(5x-1\right)^2\)

\(=x^4+27x^2+1-10x^3+250x^5-1400x^4+1030x^3-302x^2+40x-2\)

\(=-1399x^4-275x^2-1+1020x^3+250x^5+40x\)

5) \(F=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2\)

\(=\left[a^2+b^2-c^2-\left(a^2-b^2+c^2\right)\right]\cdot\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\)

\(=\left(a^2+b^2-c^2-a^2+b^2-c^2\right)\cdot2a^2\)

\(=\left(2b^2-2c^2\right)\cdot2a^2\)

\(=2\left(b^2-c^2\right)\cdot2a^2\)

\(=2\left(b-c\right)\left(b+c\right)\cdot2a^2\)

\(=2\cdot2a^2\cdot\left(b-c\right)\left(b+c\right)\)

\(=4a^2\cdot\left(b-c\right)\left(b+c\right)\)

6) \(G=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)

\(=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+\left(-c\right)^2+2ab-2ac-2bc-2\left(a^2+2ab+b^2\right)\)

\(=a^2+b^2+c^2+2ab+a^2+b^2+\left(-c\right)^2+2ab-2a^2-4ab-2b^2\)

\(=0+0+c^2+0+c^2\)

\(=2c^2\)

7) \(H=\left(a+c\right)\left(a-c\right)-\left(a-b-c\right)\left(a-b+c\right)+b\left(b-2x\right)\)

\(=a^2-c^2-\left[\left(a-b\right)^2-c^2\right]+b^2-2bx\)

\(=a^2-c^2-\left(a^2-2ab+b^2-c^2\right)+b^2-2bx\)

\(=a^2-b^2-a^2+2ab-b^2+c^2+b^2-2bx\)

\(=2ab-2bx\)

21 tháng 6 2017

\(D=\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)=\left(9x-1+1-5x\right)^2=\left(4x\right)^2=16x^2\)

25 tháng 6 2017

a) Biến đổi VT ta có :

(a2-b2)2 + (2ab)2

= a4 -2a2+b4+4a2b2

= a4+2a2b2 +b4

= (a2b2)2 = VP (đpcm)

hiha

25 tháng 6 2017

b) Biến đổi vế trái ta có :

(ax+b)2 + (a-bx)2+cx2+c2

= a2x2+2axb+b2 +a2 - 2axb+b2x2 +c2x2+ c2

= (a2+b2+c2) + x2(a2+b2+c2)

= (a2+b2+c2) (x2+1) = VP (đpcm)

oaoa

21 tháng 8 2017

a. x2y2+1-x2-y2

=x2.(y2-1)-(y2-1)

=(y2-1).(x2-1)

=(y-1)(y+1)(x-1)(y-1)

21 tháng 8 2017

c. x^3+3x^2-3x-1

= (x-1).(x^2+x+1)+3x.(x-1)

=(x-1)(x^2+x+1+x-1)

=(x-1)(x^2+2x)

=x(x-1)(x+2)